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RESTRICTED BOLTZMANN MACHINE

Restricted Boltzmann Machine 1s an undirected
oraphical model that plays a major role in Deep

Learning Framework in recent times.
It was 1nitially introduced as Harmonium by Paul
Smolensky in 1986 and 1t gained big popularity in recent

years In the context of the Neiflix Prize by

using Collaborative Filtering.

: . ‘{‘: J
Restricted Boltzmann Machine (RBM for gFA

versatile feature extraction method.


https://en.wikipedia.org/wiki/Netflix_Prize
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It is an algorithm which is useful for

1) Dimensionality Reduction

11) Classification

111) Regression

1V)
The Name suggests, The “restricted” part of the name
“Restricted Boltzmann Machines” means
Restrict: No Visible unit is connected to any other Visible
Unit

No Hidden Unit is connected to any other Hidden Unit.



CONTD..

Visible Unit Hidden Unit

Boltzmann Machine Restricted Boltzmann Machine
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The main difference between a Boltzmann machine
and a restricted Boltzmann machine 1s that there 1s
no intra layer communication, 1.e, the nodes of the
same layer are not connected which makes them

independent from each other.



TYPES oF RBM

There are mainly two types of Restricted Boltzmann Machine

(RBM) based on the types of variables they use:

Binary RBM: In a binary RBM, the input and hidden units are

binary variables. Binary RBMs are often used in modeling binary

data such as images or text.

Gaussian RBM: In a Gaussian RBM, the input and hidden units are

continuous variables that follow a Gaussian distribution. Gaussian
RBMs are often used in modeling continuous data such as audio

signals or sensor data.



WORKING PRINCIPLE OF RBM

Layers: Restricted Boltzmann Machines are shallow, two-layer

neural nets that constitute the building blocks of deep-

belief networks.

The first Layer of the RBM 1is called the visible, or input layer,

and

The Second Layer is the Hidden Layer.
Visible Layer Hidden Layer

Each circle represents a
Neuron-like unit called a node.
The nodes are connected to each other

across layers, but no two nodes

of the same layer are linked.
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Each visible node takes a low-level feature from an

item 1n the dataset to be learned.

At node 1 of the hidden layer, x is multiplied by

a weight and added to a bias.

The result of those two operations 1s fed i1into
an activation function, which produces the node’s
output, or the strength of the signal passing through

1t, given input x.
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Visible Layer

Hidden Layer

+b=a2a

X — input
W - weight

a - activation function
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activation f((weight w * input x) + bias b ) = output a

One Input Path

visible hidden activation
layer layer function

input *
+b » / =a

O
O
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» Next, let’s look at how several inputs would combine at one hidden node.
» Each x is multiplied by a separate weight, the products are summed,
added to a bias, and again the result is passed through an activation function

to produce the node’s output.

Visible Layer Hidden Layer

X — input
W — weight

° -

a — activation function

|
o
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» At each hidden node, each input x is multiplied by its respective
weight w. 1.e, a single input x would have three weights here,
making 12 weights altogether (4 input nodes x 3 hidden nodes).

» The weights between the two layers will always form a matrix
where the rows are equal to the input nodes, and the columns are
equal to the output nodes.

» Each hidden node receives the four inputs multiplied by their
respective weights.

» The sum of those products is again added to a bias (which forces at
least some activations to happen), and the result is passed through
the activation Function producing one output for each hidden

node.



RECONSTRUCTION OF RBM

» The Learning process consisting of several Forward and Backward
passes.

» In the Forward Pass, RBM takes the inputs and Translates them
Into a set of numbers that encode the Inputs

» In the Backward Pass, It takes the set of humbers and translates
them back to form the Reconstructed Inputs.

» In Reconstruction, the logic Is pretty simple. You have the
activations, which are the inputs at this point and then passed to the
hidden layer and then to the input later.

» After this, new biases are obtained, and the reconstruction is the

new output.
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Reconstruction

visible hidden
layer layer 1

these biases are new
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TRAINING OF RESTRICTED BOLTZMANN MACHINE

» In RBM there are Three Steps through which the entire RBM works:
» Step-1: FORWARD PASS: In this phase, we take the input layer and

using the concept of weights and biased we are going to activate the
hidden layer. This process is said to be Feed Forward Pass. In Feed
Forward Pass we are identifying the positive association and negative
association.

Feed Forward Equation:

Positive Association — When the association between the visible unit
and the hidden unit is positive.
Negative Association — When the association between the visible unit

and the hidden unit is negative.
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» For eg: In Forward Pass, The input image is converted into Binary
Values.
» Then the vector input is fed into the network, where:
» Its values are multiplied by weights and bias is added

» Then the result goes through the Activation Function, Such as
Visible Hidden

qoe W)
» Then it represents the Probability 7 q 2__ oi : L: 1] eihetv

of the node activation.

Sigmoid Function,

> l.e, it represents the which neuron

may or may not active.

o[ (wi..wn)+Db]
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Step-2:BACK _WARD PASS: As we don’t have any output layer.

Instead of calculating the output layer, we are reconstructing the input
layer through the activated hidden state.
This process iIs said to be Feed Backward Pass. We are just
backtracking the input layer through the activated hidden neurons.
After performing this we have reconstructed Input through the
activated hidden state. So, we can calculate the error and adjust

weight in this way:
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» Foreg: In Backward Pass, The data that is passed backward.

» It is also combined with the same weights and bias.

» Once the information gets to the visible Layer , the shape of the
probability distribution of the Input values, sampling the

distribution, the input is reconstructed.

Reconstructed Input
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Step-3: Accessing Reconstruction Quality: Quality is compared by the

original data.

The RBM calculates the error and adjust the weights and bias iIn
order to minimize it.

Error = Reconstructed Input Layer-Actual Input layer

Adjust Weight = Input*error*learning rate (0.1)

Input Reconstructed Input

742887Q2




INTERNAL TRAINING OF RESTRICTED BOLTZMANN MACHINE

» The training of the Restricted Boltzmann Machine differs from
the training of regular neural networks via stochastic
gradient descent.

» Here, Visible Units only talk to Hidden Units and

» Hidden Units talk to Visible Units.

HIDDEN ¢ = Z“’/x"l + b, P(hi=1)
J

_1+e#

VISIBLE  { G Z W/lh« + bl P(v‘ = 1) =
/

1+e77
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» The Two main Training steps are:

1. Gibbs Sampling: The first part of the training is called Gibbs

Sampling. Given an input vector v we use p(h|v)for prediction of

the hidden values h.

» Remember that we all know about P(A/B). le, we are fining the
probability of A given B.
» In the same way, P(hj=1|V) is that given the input vector V, trying
to calculates the values of the Hidden Vector.
1

phi=11v) = —— by~ O bt Zvavi)
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For prediction of new input values v. This process Iis

repeated k times. After Kk iterations, we obtain another iIn

®

vector v_k which was recreated from original input values v_0.
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1
1+e(-(aitwihy))

p(vi= 1 Ih) - =0 (a; + Z hywi ;)

2. Contrastive Divergence step: The update of the weight matrix

happens during the Contrastive Divergence step.
Vectors v 0 and v _k are used to calculate the activation

probabilities for hidden valuesh 0and h_k:
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» The difference between the outer products of those probabilities

with input vectors v_0 and v_Kk results in the updated matrix :

AIV - Vo) ’\/! P(]lo l V) \'A /)' P(h | \"'. -V,
k k' k k

» Using the update matrix the new weights can be calculated with
radient ascent, given by:

) ] Y Woew = old + AW
» Finally, Contrastive divergence (CD) algorithm is used to train the
RBM. The algorithm performs Gibbs sampling and is used inside
a gradient descent procedure (similar to the way back propagation
IS used Inside such a procedure when training feed forward neural

nets) to compute weight update.



USE CASES OF RBM

» Pattern recognition : RBM 1Is used for feature extraction In

pattern recognition problems where the challenge iIs to

understand the hand written text or a random pattern.

» Recommendation Engines : RBM is widely used for
collaborating filtering techniques where it is used to predict
what should be recommended to the end user. so that the user
enjoys using a particular application or platform.

» For eq : Movie Recommendation, Book Recommendation




APPLICATIONS OF RBM

Hand Written Digit Recognition is a very common problem these days
and is used in a variety of applications like criminal evidence, office
computerization, check verification, and data entry applications.

It also comes with challenges like different writing style,
variations in shape and size as well as image noise, which leads to
changes in numeral topology.

In this a hybrid RBM-CNN methodology is used for digit
recognition.

First, features are extracted using RBM deep learning
algorithms. Then extracted features are fed to the CNN deep learning

algorithm for classification.
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RBMs are highly capable for extracting features from input
data. It is designed In such a way that it can extract the features from
large and complex datasets by introducing hidden units in an

unsupervised manner.
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AUTOENCODERS

Autoencoders fall under unsupervised learning algorithms as they
learn the compressed representation of the data automatically from

the input data without labels.

In Autoencoders Name,

AUTO means =self

ENCODERS means- Convert into different form (reduced Dimensions)
Autoencoders (AEs) are a type of neural network architecture that
1s able to find a compressed representation of the input data such

as Image, video, text, speech, etc..

They became a popular solution for reducing noisy data.
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Autoencoders are used to reduce the size of our inputs into a
smaller representation. If anyone needs the original data, they can

reconstruct it from the compressed data.

Autoencoders are a specific type of feed forward neural networks

trained to copy its mput to output.

The aim of an autoencoder 1s to learn a lower-dimensional

representation (encoding) for a higher-dimensional data, typically

for dimensionality reduction, by training the network to capture the

most important parts of the input image.


https://www.v7labs.com/training

ARCHITECTURE OF AUTOENCODERS

Autoencoders consist of 3 parts:
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An autoencoder replicates the data from the mput to the output in
an unsupervised manner and 1s therefore sometimes referred(to

as a replicator neural network.
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» A generic way to define an autoencoder using a
mathematical notional will be f(x) = h,

» where x 1s the input data and h is the latent
variables in the information bottleneck. This formula
denotes the encoder part of the network

» The basic goal of an autoencoder 1s to make the
output x as close to the input x as possible.

» Now 1t cannot always be done if the number of
neurons in the middle layer is much smaller than

in the bottom or the top.
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Encoder: An encoder is a feed forward, fully connected

neural network.

The encoder i1s the first part of the autoencoder and is
responsible for transforming the input data into a
compressed representation. This compressed
representation is often referred to as the latent space or

bottleneck.

The encoder consists of one or more layers of neurons,
typically implementing non-linear activation functions
like ReLU (Rectified Linear Unit) to capture complex

patterns in the input data.

Kivetr +the anender talrace the 1tnniit and aneadece 1+ Kar
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First, the encoder takes the input and encodes it. For
example, let the input data be x. Then, we can define the
encoded function as f(x).
Code: Code 1s the representation of compressed input
which applies to the decoder. This part of the network

1s also refer as bottleneck. It balances two factors

such as which part of information to be taken and

which part of information to be discarded.
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Decoder: This layer decodes the encoded image back to the

original dimension. The decoded 1mage 1s a lossy reconstruction of
the original 1mage and 1t 1s reconstructed from the latent space

representation.

The layer between the encoder and decoder, 1e. the code 1s also
known as Bottleneck. The bottleneck layer 1s the layer m the
middle of the autoencoder, where the compressed representation 1s

stored.

It has a smaller number of neurons compared to the mput and

output layers, effectively reducing the dimensionality of the data®
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MATHEMATICAL REPRESENTATION

Essentially, we split the network into two segments, the encoder,

and the decoder.
D X — F
P F — X

P, — ar%ﬁlin | X — (¢ o Pp)X||?

» The encoder function, denoted by ¢, maps the original data X,
to a latent space F, which 1s present at the bottleneck.
» The decoder function, denoted by {5, maps the latent space F at

the bottleneck to the output.

» The output, in this case, 1s the same as the input function. Thus, we are

basically trying to recreate the original image after some generalized non-lmear

compression.
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» The encoding network can be represented by the standard
neural network function passed through an activation function,

where z 1s the latent dimension

z=0(Wx+b)

» Similarly, the decoding network can be represented in the same
fashion, but with different weight, bias, and potentially activation

functions being used.

x =0 (Wz+b')
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» The loss function can then be written in terms of these network
functions, and 1t 1s this loss function that we will use to train the
neural network through the standard back propagation

procedure.

L(x,x) =[x x| = |x - o' (W (o(Wx + b)) + b')




Encoder Decoder

put, X f(X) y g(f X) g(h) output,y




EXAMPLE

Original Input Latent Representation Reconstructed Output

x E(x) s D(s) o
Therefore... 0 = D(E(X))

In this example, you can observe the following steps:

» The input a digit into the autoencoder.

» The encoder sub network generates a latent representation of the
digit 4 which is considerably smaller in dimensionality than the
Input.

» The decoder sub network reconstructs the original digit using the

latent representation.




PROPERTIES OF AUTOENCODERS

1. Unsupervised ILeaning: Autoenoders are considered as

unsupervised learning technique. Since they don’t need

explicit labels to train on.

2. Data-specific: Autoencoders are only able to compress data

similar to what they have been traimned on.

3. Lossy: The decompressed outputs will be degraded

compared to the original inputs.

4. Learned automatically from examples: It 1s easy to train

specialized instances of the algorithm that will perform wellLen

a specific type of input.



PARAMETERS OF AUTOENCODERS

here are 4 hyperparameters that we need to set before

training an autoencoder:

Code Size Number of
Layers

Number of

node per Loss Function
layers
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Code size: It represents the number of nodes in the middle layer.

Smaller size results iIn more compression.

Number of layers: The autoencoder can consist of as many layers

as we want.

Number of nodes per layer: The number of nodes per layer

decreases with each subsequent layer of the encoder, and increases
back mn the decoder. The decoder 1s symmetric to the encoder in

terms of the layer structure.
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Loss function: We either use mean squared error
or binary cross-entropy. If the input values are in the
range [0, 1] then we typically use cross-entropy,

otherwise, we use the mean squared error.



TRAINING OF AUTOENCODERS

Users

Movie1 | .
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Movie 5
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STEP 1. We start with an array where the lines (the observations) correspond to the users and the columns (the features)
correspond to the movies. Each cell (u, i) contains the rating (from 1 to 5, 0 if no rating) of the movie i by the user u.

&P 2: The first user goes into the network. The input vector x = (ry, 1z, ..., fn) contains all its ratings for all the movies.

$FEP 3: The Input vector x is encoded into a vector z of lower dimensions by a mapping function f (.g: sigmoid function).
z = f(Wx + b) where W is the vector of input weights and b the bias

STEP 4. z is then decoded into the output vector y of same dimensions as x, aiming to replicate the input vector x.

STEP 5: The reconstruction error d(x, y) = |[x-y|| is computed. The goal is to minimize it.

STEP 6: Back-Propagation: from right to left, the error is back-propagated. The weights are updated according to how much
ey are responsible for the error. The leaming rate decides by how much we update the weights.

STEP 7: Repeat Steps 1 to 6 and update the weights after each observation (Reinforcement Learning). Or:
J Repeat Steps 1 to 6 but update the weights only after a batch of observations (Batch Learning).

STEP 8: When the whole training set passed through the ANN, that makes an epoch. Redo more epochs.
Lo




CONTD..

Step-1: WE start with an Array where the lines(the observations)

correspond to the users and the columns(the Features) corresponds to
the Movie.

Each Cell (u,i) contains the rating from 1 to 5, 0 has no

rating of the movie 1 by the user u
) 4 |STEP 1




CONTD..

Step-2:

‘The first user goes into the network. The input vector x = (1, 12, ..., fn) contains all its ratings for all the movies.

| STEP 2|

Visible
Input
Nodes




Step-3:
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The input vector x is encoded into a vector z of lower dimensions by a mapping function f (e.g: sigmoid function
z = f(Wx + b) where W is the vector of input weights and b the bias

|

| STEP 3
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Step-4:

z s then decoded into the output vector y of same dimensions as x, aiming to replicate the input vector x.

STEP 4|

AN
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Step-b:

The reconstruction error d(x, y) = ||x-y|| is computed. The goal is to minimize it.

STEP 5 . Movie 1

\ ;‘ Movie 2
}\’{/ \\0{". Movie 3
S ZasYs S
:i:‘:ti'}:;s‘g. Movie 4

oW
' \ ‘/’ ‘\. Movie 5

. Movie 6
> «

Vishle  Encoding Decoding

. Visible
Input :vggen Output
Nodes Be Nodes
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Step-6:

STEP 6: Back-Propagation; from right to left, the error is back-propagated. The weights are updated according to how much
ey are responsible for the error. The learning rate decides by how much we update the weights.

. Movie 1

‘1/ . Movie 2

‘9./ \.'(' s
SO~ EL)
SERANRDEISA
' LS 5 D “. Movie 4
I‘ /’& R
/ §' Movie 5
N . Movie 6
Visible ~ Encoding Hidden Decoding  yigipye
= o =




CONTD..

Step-7/:

STEP 7: Repeat Steps 1 to 6 and update the weights after each observation (Reinforcement Learning). Or:
0 Repeat Steps 1 to 6 but update the weights only after a batch of observations (Batch Learning)

. Movie 1
\ Movie 2

N
}\’{/“\y’('i. Movie 3

o N, ;
‘g{ >.":“. Movie 4

Movie 5

Movie 6

Visible Encoding Decoding

Input
Nodes
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Step-8:

When the whole training set passed through the ANN, that makes an epoch. Redo more epochs.

Movie 1

Movie 2

Movie 3

Movie 4

Movie 5

Repeat
B Movie 6

Visible
Qutput




APPLICATIONS OF AUTOENCODERS

o 1. Image Coloring: Autoencoders convert any black and

white image into a colored image. Depending on

what 1s 1n the picture , it 1s possible to tell what the

colour should be

R . J ' [ " ' - <9 o \T -
s R O B
2 sn” o .- B ‘ “"‘
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b -’ ' b 2 P~' 2 &
e ) N VY
'y " .
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o 2. Feature Variations: Autoencoders extract required

features from the original input image and then

generate noise free output image.

Bottleneck Laver
Input Image Output Image

Encoder Decoder
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o 3. Dimensionality Reduction: The reconstructed image

1s the same as our input but reduced dimensions. It
helps 1n providing the similar image with a reduced

Pixel value.
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4. Denoising Image: A denoising autoencoder 1s trained to

reproduce the clean image from the corrupted/noisy

version.

Noisiy Input

Encoder

K

Compressed

Decoder

- 3

representation

Denoised image
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o 5. Watermark Removal: It 1s also used for removing

watermarks from images or to remove any object

while filming a video or a movie.




How AUTOENCODER WORKS IN COMPUTER VISION

Autoencoder models are commonly used for image processing

tasks in computer vision.

In this use case, the mput 1s an 1mage and the outputis a

reconstructed 1mage. The model learns to encode the 1mage mnto a

compressed representation

1 ] ] |
11 | B
N
a0 [ =
N

i t

3
T
c

PINENLRA

encoder decoder| |

target




LIMITATIONS OF AUTOENCODERS

let's suppose we've trained an autoencoder model on a

large dataset of faces with a encoding dimension of

6.

An 1deal autoencoder will learn descriptive attributes
of faces such as skin color, whether or not the
person is wearing glasses, etc. In an attempt to
describe an observation In some compressed

representation.
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Smile; 0.99

Skin tone: 0.85

Gender; -0.73

encoder decoder

Beard: 0.85

Glasses: 0,002

Hair color; 0.68

..\-

Latent attributes
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In the example above, we've described the input image
in terms of its latent attributes using a single value

to describe each attribute.

However, we may prefer to represent each latent

attribute as a range of possible values.

Using a variational autoencoder, we can describe latent

atiributes in probabilistic terms.
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Smile (discrete value) Smile (probability distribution)
—@ | - = | -
1 0 1 1 0 1
% . = : /\ ;
1 0 1 4 0 1
VS.
- —e—1 | /\ -
1 0 1 1 0 1
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With this approach, we will now represent each latent
attribute for a given input as a probability

distribution.

When decoding from the latent state, we will
randomly sample from each latent state
distribution to generate a vector as input for our

decoder model.
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v

/ ) ;-\\\ \
“'VVI ‘\\
Smile: H—Aﬂ
-1
Skin tone: «‘r—A—H

Gender: <t i e

encoder /\ decoder
Beard: < : >
. 1
Glasses: <t /\

<t T T

-1
Hair color: <—¢—¢—‘/L»

o 1

NG A

Latent attributes

Note: For variational autoencoders, the encoder model 1s sometimes
referred to as the recognition model whereas the decoder model 1s

sometimes referred to as the generative model.



LIMITATIONS OF AUTOENCODER

At this point, a natural question that comes 1in mind is

“what is the link between autoencoders and content

oeneration?’.

Here, once the autoencoder has been trained, we
have both an encoder and a decoder but still no real

way to produce any new content.

At first sight, we could be tempted to think that, if the
latent space is regular enough (well “organized” by

the encoder during the training process)
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we could take a point randomly from that latent space and decode

it to get a new content.
The decoder would then act more or less like the generator.
But here we can’t know how to get the decoder data.

Suppose Autoencoder gives Good Results, OK well. But 1s does

not gives the Good Results, there 1s a Problem.

1.e, we have raised one question mn our mind? How can Latent

Space generate the samples.

Lastly, autoencoders may not always generalize well to new, unséén

data.
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» This limitation 1s a challenge in applications where the model must
perform well on data that 1s significantly different from the training

set.
» Misunderstanding import variables
» Insufhcient Training Data
» Imperfect decoding

» Generative Modeling
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Another Real Time Example: Using an autoencoder that
compresses the famous MNIST 28 x 28 handwritten digits dataset.

We use the following neural network architecture, which has a two-

dimensional latent space:

Latent

Encoder
Space

Decoder

= - * - B
28 x 28 »|s00}——]250 > 2] »|250}——{500}—>|28 X 28
=784 _I = 784

All layers fully connected
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» After traming our autoencoder (by minimizing its loss function via
stochastic gradient descent), we find these encodings of the

handwritten digits in our validation set, grouped by their labels 0-9:

Distribution of number encodings (validation set only)
(red circle contains 99% of all points)

20 -

e ®2 00

10 1

W o~ o b s W = O

=30 -20 -10 0 10 20 30
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» and pass the vector at each lattice site through the
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Numbers generated from latent variable values
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While many images have good quality, others are
blurry or incomplete because their sites are far

from the point cloud.

Drawback is :

The quality of the generated handwritten digits is

worse than in the two-dimensional case.

Because two-dimensions is usually too small to
capture the nuances of complicated data, this is
not good news.

So we can introduced the advanced Topic Variational
Autoencoder.




Thank You
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VARIATIONAL AUTOENCODER

A more recent type of autoencoder model 1s the Variational

autoencoder (VAE) introduced by Kingma and Welling at Google
introduced 1n the year 2013.

The VAE 1s similar to compression and Denoising autoencoders in
that they are all tramed 1n an unsupervised manner to reconstruct
mputs.

Variational Autoencoders (VAEs) are generative models explicitly

designed to capture the underlying probability distribution of a

given dataset and generate novel samples.



ARCHITECTURE OF VARIATIONAL AUTOENCODER

We can fix these 1ssues of Autoencoders, we can make two changes

to the autoencoder. The result 1s the “variational autoencoder.”

However, the mechanisms that the VAEs use to perform training
are quite different. In a compression/denoising autoencoder,
activations are mapped to activations throughout the layers, as in a

standard neural network; comparatively, a VAFE uses a probabilistic

approach for the forward pass.

First, we map each point x in our dataset to a low-dimensional
vector of means ((x) and variances 6(x)2 for a diagonal multivariate

Gaussian distribution.
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The encoder-decoder architecture lies at the heart of Variational
Autoencoders (VAEs), distinguishing them from traditional
autoencoders. The encoder network takes raw mput data and

transforms it into a probability distribution within the latent space.

1.e, the latent code generated by the encoder i1s a probabilistic
encoding, allowing the VAE to express not just a single pomt i the

latent space but a distribution of potential representations.
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Encoder Random Sample Latent Decoder
Space
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What is the use of two terms:

M and o?

¢ Mean vector (u) determines the
central point for encoding an input

¢ Standard deviation (o) determines
how much the encoding can
deviate from that central point

A point in latent
space
Vanilla Autoencoder V‘m:l‘n“fm
probability distribution)
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First we can stats with Encoder Part: Here variance values are

Inherently Positive, 1e we can cover the entire real number

spectrum from (- to + ),

Now this approach enables us to employ the neural network as the

encoder to transform mput 1mages mto both Mean and

Logarithmic Variance Vectors. c
Here 7Z-Mean represents the Mean Point. q E" |
Here Z-log_Var represents the S J_ :
Logarithmic variance of each Dimension. l/ _— %
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Next, we generate Sample point 7, from the distribution defined by

sample distribution. After that we can given to Decoder.

Suppose there 1s a loss 1n the expected output.

Sample e

- lg@

Variational autoencoder uses KL-divergence as its loss

_mean
-3

z

function, the goal of this is to minimize the
difference between a supposed distribution and

original distribution of dataset.
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© Mathematically,

X |  Encoder

z = fylx)

Autoencoder

Z

Latent
space

Decoder

X= h()(Z)

Variational Autoencoder

Encoder

z = fy(x)

Latent
G space

Zi = |l + 0;.€
e~ N(0,1)
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In reconstruction Phase, instead of directly sampling from
z_mean & 7, log var , we use re-parameterized trick by the use of

Back propagation Algorithm.

In our example, you approximate Z using the decoder parameters

2i = i +0;.€

and another parameter € as follows: o
e~ N0,

We start by Sampling epsilon from a standard normal distribution.

where g and o represent the mean and Variance of a Gaussian
distribution respectively. They can be derived from the decoder

output.

Here, we can add the Epsilon random value between (0,1).
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o0 The Re parameterized Trick keeps all randomness with epsilon,

ensuring deterministic gradients.

0 These determinustic gradients are mainly used for back propagation

through layer and effective neural network training.
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Minimize 1:(x — £)?

, -

Encoder

e

NQ,I) =™ & —

e

Z=+00¢

Minimize 2: %Z?Ll(exp(ﬁi) — (140;) + ;%)

Decoder

d




WHY WE NEED BOTH RECONSTRUCTION AND KL LoOSS

When using only the KLL Loss , the Latent Space ends up with
encodings scattered randomly near its centers, without considering

similarity among nearby encodings.

When optimizing both the KL Loss and another Loss together, 1t

creates a latent space where nearby encodings are similar, forming

i
1

clusters on a local scale.
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© Mathematically,
£

sampling

latent

S latent vector
distribution

'

reconstructed

input

lz, 0z = €g(z), €~ N(0,I)

reconstruction loss = |z — &y = ||z — dy(2)||, = |z — dg(uz + 0ue)]|, TPV

similarity loss = KL Divergence = Dy, (N (e, 0z) || N(0,1)) ‘

loss = reconstruction loss + similarity loss




DIFFERENCE BETWEEN RBN AND AUTOENCODER

» Autoencoder 1s a simple 3-layer neural network where output

units are directly connected back to mput units. Typically, the
number of hidden units 1s much less than the number of visible
ones.

» The task of tramning 1s to minimize an error or reconstruction, 1.e.
find the most ethicient compact representation for mput data.

» Restricted Boltzmann Machines are, two-layer neural nets that

constitute the building blocks of deep-belief networks. The first
layer of the RBM 1s called the wisible, or mput layer, and the
second 1s the hidden layer.


https://www.edureka.co/blog/autoencoders-tutorial/
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DIFFERENCE BETWEEN AUTOENCODER & VAE

Autoencoders and Variational Autoencoders
Similarities & Differences

Similarities

Differences

Both AE& VAE are Neural Network
Architectures that are used for Unsupervised

Learning

AE uses Deterministic Mapping to represent
the Input Data, while VAE uses Probabilistic

Mapping

Both AE& VAE consists of an encoder and
decoder network. The Encoder maps the input
data to a latent representation, and the decoder

maps the latent representation back to the
original data

VAE has additional Loss term that is used to
regularize the latent space called KL
Divergence Loss. This loss uses the Gaussian
Distribution.

Both AE and VAE are used for Dimensionality
Reduction, Data Generation and Anomaly

Detection

VAE can be used to generate new data
samples by sampling from the latent space,

where AE cannot.




DIFFERENCE BETWEEN AUTOENCODER & VAE

Autoencoder Variational Autoencoder
Used to generate a compressed Enforces conditions on the latent variable to
transformation of input in a latent space be the unit norm

The latent variable in the compressed form is

The latent variable is not regularized _
mean and variance

Picking a random latent variable will generate | A random value of latent variable generates
garbage output meaningful output at the decoder

The input of the decoder is stochastic and is
Latent variable has deterministic values sampled from a Gaussian with mean and
variance of the output of the encoder.

The latent space lacks the generative

capability The latent space has generative capabilities.




Thank You
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Topics :

Generative Adversarial Network
» Architecture of GAN
> Mathematical Notation
> Loss Function GAN
> Training Process of GAN
~ Types of GAN
> Applications of GAN
~ Future generations of GAN

» Differences b/w VAN and GAN



UNSUPERVISED PRETRAINED NETWORKS

Unsupervised pre-training 1s a Deep Learning technique that
leverages unlabeled data to learn a preliminary model, which can
then be fine-tuned with a smaller amount of labeled data. This

approach 1s particularly beneficial in scenarios where labeled data 1s

scarce or expensive to obtain.

Unsupervised pre-training is a technique mvolves unlabeled data to

learn features and data distribution:
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1. Pre-training : The model 1s trained on a large amount of

unlabeled data using unsupervised learning algorithms like
generative models or autoencoders. This phase helps the model

learn the underlying data distribution and extract useful features.

2. Fine-tuning : The pre-trained model 1s then further trained on a

smaller set of labeled data. The model adjusts its parameters to

better fit the specific task at hand.
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It also mamly follows Two Hypothesis in unsupervised Pretrained

Networks:

1. Better optimization: Unsupervised pretraimning puts the network m a

region of parameter space run deeper than when starting with random
parameters. In simple words, the network starts near a global
minimum. In contrast to a local mmmmum, a global mmimum means a

lower training error.

2. Better regularization: Unsupervised pretraining puts the network mn a

region of parameter space in which training error is not necessarily

better than when starting at random (or possibly worse)
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but which systematically yields better generalization (lower test error).

Such behavior would be indicative of a regularization effect.

Based on the Unsupervised Pretrained Networks we can follow the
GAN and Auto Encoders Algorithms.



GENERATIVE ADVERSARIAL NETWORKS

To understand the term GAN let’s break it into separate three
separate  Words. and each of them has its separate

meaning, which is as follows:

1. Generative - To learn a generative model, which describes how

data is generated in terms of a probabilistic model. In simple words, 1t

explains how data is generated visually.

2. Adversarial - The training of the model 1s done 1n an adversarial

setting. 1.e, The word adversarial refers to the context of GANs, the

generative result 1s compared with the actual images in the data set.
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This mechanism known as a discriminator and this 1s used to apply
a model that attempts to distinguish between real and fake images.

3. Networks - Use deep neural networks as artificial intelhigence (Al)

algorithms for training purposes.

(GANSs are a tvpe of neural network architecture that

can generate new data based on the patterns learned

from a given dataset.

This means that GANs can create entirely new,
realistic images, videos, and even audio clips that

have never existed before.


https://www.projectpro.io/article/5-different-types-of-neural-networks/431

ARCHITECTURE OF GAN

Generative Adversarial Networks (GANs) are a groundbreaking
innovation in the field of Deep Learning, particularly within the

domain of unsupervised learning.

GANs are made up of two neural networks,

1. Generator and
2. Discriminator

These 2 models that automatically discover and learn the patterns in

input data.


https://www.geeksforgeeks.org/neural-networks-a-beginners-guide/
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They comprise two networks:

The generator, which produces synthetic data. 1.e, information that
1s artificially generated rather than produced by real-world events

and

The discriminator, which differentiates between real and generated
data. This unique structure enables GANs to generate highly

realistic and diverse outputs, from 1mages to text.
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Back Ptopeggtion: Maximize Error

Latent
8pach ‘ Generator
Dataset - D ‘l
Image

The GAN Network Process

&

Discriminator

Back Propagation: Minimize Ercor
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The Generator: The generator network 1s responsible for generating

new data that 1s similar to the training data. The generator network
takes random noise as mnput and produces a generated output. The
goal 15 to train the generator to produce outputs that are as close to

the real data as possible.

A Generator in GANs 1s a neural network that creates fake data to

be trained on the discriminator.

Generator network Fake Image

-
oo
Q.
=
3
@)
©
| =
1)
oc
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"The main aim of the Generator 1s to make the discriminator
classify its output as real. The part of the GAN that trains the

Generator mcludes:

Provide fake mput or noise and get random noise to produce

output based on the noise sample.
Predict generator output either real or fake using discriminator.
Calculate discriminator loss and perform back propagation.

Calculate gradients to update the weights of the generator.
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Back propagation of Generator: The generator modifies some data

attributes by adding noise (or random changes) to certain attributes
The generator passes the modified data to the discriminator

The discrimmator calculates the probability that the generated

output belongs to the original dataset

The discriminator gives some guidance to the generator to reduce

the noise vector randomization in the next cycle

The generator attempts to maximize the probability of mistake by
the discriminator, but the discriminator attempts to minimize the

probability of error.
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In training iterations, both the generator and discriminator iterating
continuously until they reach an equilibrium state. In the

equilibrium state, the discriminator can no longer recognize

synthesized data. At this point, the training process is over.

Real Images - ? Sample

$507
1018UIWLISIq

Generator - Sample 1 Discriminator

Random Input
e R WIS IEIVED)

4  Backpropagation
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The Discriminator: In a GAN, the discriminator acts as a binary

classifier whose main task 1s to differentiate between real data and
data generated by the GAN's generator. The choice of network

architecture for the discriminator depends on the type of data being
classified.

The Discriminator 1s a neural network that identifies real data from
the fake data created by the Generator. The discriminator's traming

data comes from different two sources:

The real data instances, such as real pictures of birds, humans,
currency notes, etc., are used by the Discriminator as positive

samples during training.
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The fake data instances created by the Generator are used as

negative examples during the training process.

Real Images

Discriminator
Network

Fake Image

While training the discriminator, 1t connects to two loss functions.
During discriminator training, the discriminator ignores gthe

generator loss and just uses the discriminator loss.
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Next, The discriminator wupdates 1its weights through

backpropagation from the discriminator loss through the

discriminator network.
S  Backpropagation
o
s
Real Images Sample Discriminator g )
5
S
= )
o m
= ®
g - Generator : Sample 1
=3 -
c
T o
o &




MATHEMATICAL NOTATION

We are basically training the Discriminator to maximize the
probability of assigning correct labels to both real and generated
data.

We are also training the Generator to minimize the probability to

get caught by the Discriminator, which 1s equivalent to minimizing
log(1-D(G(2))).
here the Discriminator is trying to minimize its reward V(D, G) and

the Generator 1s trying to minimize the Discriminator’s reward or

i other words, maximize its loss.



MATHEMATICAL NOTATION

min max V (D, G)
& P

V(D,G) = Eypioraz)logD(x)] + E, .. () [log(1l — D(G(2))]

where, G = Generator, D = Discriminator

Pdata(x) = distribution of real data

C e : Real dat
P(z) = distribution of generator e

2z Latent vector

x = sample from Pdata(x) G(2) : Fake data

z = sample from P(z) D(z) : Discriminator’s evaluation of real data

D(x) = Discriminator network D(G(z)) : Discriminator’s evaluation of fake data

G(z) = Generator network



Lo0SS FUNCTIONS IN GAN

The traming process for GANs involves minimizing a loss function

that quantifies the difference between the generated and real data.

There are two types of Loss Functions:

1. Generator Loss

2. Discriminator Loss

1. Generator Loss: The objective of the generator in a GAN is to

produce synthetic samples that are realistic enough to fool the

discriminator. The generator achieves this by minimizing its loss

function JaG.
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The loss 1s minimized when the log probability 1s maximized, 1.e.,
when the discriminator 1s highly likely to classify the generated

samples as real. The following equation 1s given below:

Jg = iZj”_llogD(G(z,‘))

I

The generator aims to mimimize this loss, encouraging the

production of samples that the discriminator classifies as real

(logD(G(z2)), close to 1.
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2. Discriminator lLoss: The discriminator reduces the

negative log likelihood of correctly classifying both

produced and real samples.

Jp=

1

m !1

' log D(z :)-—Z” log(1-D(G())




TRAINING PROCESS OF GAN

Step 1: Define a Problem.

Step 2: Select Architecture of GAN.

Step 3: Train Discriminator on Real Dataset.
Step 4: Train Generator.

Step 5: Tram Discriminator on Fake Data.

Step 6: Train Generator with the output of Discriminator.

O 0 0 0 O

Define Select Train Generate Train Train
Architecture Discriminator Fake Discriminator Generator

d ith th
of GAN ©OnReal |nputsfor on Fake :.:tput gf

Problem Data Generator Data Discriminator




TYPES OF GAN

Vanilla GAN

Conditional GAN (CGAN)

Deep Convolutional GAN
(DCGAN)

CycleGAN

Generative Adversarial Text to
Image Synthesis

StyleGAN

Super Resolution GAN (SRGAN)
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» 1. Vanilla GAN: This 1s the most basic form of GAN, where both

the generator and discriminator are modeled using multi-layer

perceptrons.

» The generator focuses on capturing data distribution, while the
discriminator evaluates the probability that a given sample 1s real or

synthetic.

» This Vanilla GAN always tries to optimize the

mathematical equation using stochastic gradient

descent.



https://www.geeksforgeeks.org/ml-stochastic-gradient-descent-sgd/

High
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/
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Network
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Generated
Fake Images

/

Real

Fake

ARCHITECTURE OF VANILLA GAN




Noise vector

- Training Feedback |

Generated sample

.......

(discriminator)

Real sample

(Loss Rate)

EXAMPLE OF VANILILA GAN
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2. Conditional GAN: CGAN can be described as a deep

learning method 1 which some conditional parameters are put into

place.

Here, both networks receive additional mmformation such as class
labels, making the model conditional. This allows the generation of

data that 1s more specific to the given condition.

In CGAN, an additional parameter ‘y’ 1s added to the Generator

for generating the corresponding data.

Labels are also put into the input to the Discriminator in order for
the Discriminator to help distinguish the real data from the fake
generated data.


https://www.geeksforgeeks.org/conditional-generative-adversarial-network/
https://www.geeksforgeeks.org/introduction-deep-learning/
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Architecture of Condittonal GAN
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Conditional GAN

c: train »

G » Image x = G(c,z)
Normal distribution z »

» X is realistic or not +
scalar

» (better) ¢ and x are matched or not

True text-image pairs: (train, @ ) i

(cat, H) 0 (train, mage ) O

Example of Conditional GAN
(CGAN)
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3. Deep Convolutional GAN (DCGAN): DCGANs

employ convolutional neural networks, making them more effective

for tasks that mmvolve image data. They are known for generating

high-quality, high-resolution images.

Deep Convolutional GAN (DCGAN) was proposed by a researcher
from MIT and Facebook AI research. It 1s widely used in many

convolution-based generation-based techniques.

It 1s composed of ConvNets in place of multi-layer perceptrons.

DCGAN uses convolutional and convolutional-transpose layers in_the

generator and discriminator, respectively. It was proposed by Radford.


https://www.blockchain-council.org/ai/convolution-neural-network/
https://www.geeksforgeeks.org/visualization-of-convents-in-pytorch-python/
https://www.geeksforgeeks.org/multi-layer-perceptron-learning-in-tensorflow/
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» Here the discriminator consists of strided convolution layers, and
Relu as activation function.. The generator consists of

convolutional-transpose layers, and ReLU activations. The output

will be a 3x64x64 RGB 1mage.

!
4

100 z <( b | ) -1
km’“"'“'" = =21
J 4 =

Project and reshape

Architecture of Deep Convolution GAN
(DCGAN)
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I

Noise vector 'z’

|

- Training feedback |

I Generated sample ]

’ Real sample ]

“Real” | “Fake”

--| Structure of Generator —_——

Example of DCGAN (DCGAN)
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First Many attempts Even more
attempt later attempts later

™ DISCRIMINATOR S

Example of DCGAN (DCGAN)
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4. Cycle GAN: Cycle GAN 1s used to transfer characteristic of one

image to another or can map the distribution of images to another.

In CycleGAN we treat the problem as an 1mage reconstruction
problem. We first take an 1mage mput (x) and using the generator

G to convert into the reconstructed 1mage.

Then we reverse this process from reconstructed image to original

Image using a generator F.

Then we calculate the mean squared error loss between real and

reconstructed image.
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The most important feature of this cycle_ GAN 1s that 1t can do this

image translation on an unpaired image where there 1s no relation

exists between the mnput image and output image.

DY horse ﬂh horse
A
Y*
generator 1 generator 2
zebra
Architecture of Cycle GAN

(CGAN)
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Discriminator _ | | __geg Generator Decision
DI Ga \ [1,0]
Decision ‘ﬁ < Generator .
[1,0] L .Y Gy ;

'm —>i Generator Decision
(1B Gy [1,0]
Decision \ Generator _— Di_s'crirhinator
[1,0] Gs | Dy
Architecture of Cycle GAN ‘

(CGAN)
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0 5. Generative Adversarial Text to Image Synthesis: Text to image

synthesis (T'2I) i1s one of the most challenging and interesting tasks
in the modern domain of Computer Vision. These GANs can
generate images from textual descriptions, bridging the gap between

natural language and visual data.

Generative Adversarial Text to Image Synthesis

This flower has small, round violet This flower has small, round violet
;o ' petals with a dark purple center

petals with a dark purple center

Generator Network Discriminator Netwm;h ;

Architecture of Text to Image Synthesis
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This bird 1s The bird has Thisisasmall, This bird is

This bird is This bird has A white bird white, black, small beak, black bird with  white black and
Text  blue with white  wings thatare  with a black and brown in with reddish a white breast  yellow in color,
description and hasavery  brownand has  crown and color, with a browncrown  and whitton  with a short
short beak ayellowbelly  yellow beak brown beak and gray belly  the wingbars. black beak

Stage-I

images - \

Stage-11
images

Example




Input

This flower has

white petals with |:>

yellow center,

I

I

' 0
|

L Text

Embeddings

Noise I

\CNN + Capsule Networb
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I

|

I

I

|

|

I Fine Tuni
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Down sampling ‘:>

Real/
Fake?
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6. Style GAN: Style GAN proposes a lot of changes in the

generator part.

StyleGAN was designed to create realistic 1mages while
manipulating and controlling certain features or styles of the image.
These styles associated with the generated images could be features

like color, texture, pose, etc.
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Start

l Input (Random Vector)

Mapping
Network

l Style Vector
Generator

l Cenerated Image

Discriminator

l

Output

StyleGAN [Fetce/es!

Architecture of Text to Image Synthesis
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First, StyleGAN takes a random vector as an input. This vector 1s
mapped mto a style vector representing different aspects of the

image's style and appearance.

The generator network then generates an 1mage using the style

vector.

The discriminator network evaluates whether the generated image

1s real or fake (generated).
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Content image Style imag Output image

RN

T
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7. Super Resolution GAN (SRGAN): SRGAN enhances the

resolution of images, turning low-resolution mputs into high-

resolution outputs without losing detail.

SRGAN was proposed by researchers at Twitter. The motive of
this architecture 1s to recover finer textures from the image when

we upscale 1t so that it’s quality cannot be compromused.
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Architecture of Super Resolution GAN
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128x128x3 ReallFake

256x256x3

DLIB facemarkers

B

Example of Super Resolution GAN




APPLICATIONS OF GAN

In real ttme.

They generate high quality and photo realistic Images, Videos

1. Image to Image Translation: GANs Can be in use for

translating data from 1mages. In 1mage-to-image translations, GAN’s

account for tasks such as:
Changing sketches to color photographs.
Converting satellite images to google maps.
Translation of photos from day to night and vice versa.

Translation of black and white photographs to color.
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StarGAN 1s an Image-to-image translation for one domain to

another. For example, given a happy face, we want to transform it

mnto a fearful face.

Input Blond hair Gender
[ = S au ! . »n -2

Aged Pale skin Input Angry Happy Fearful
g m i ' ! ' ' .

= W

O _ ) " () OB =
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2. Image Editing: Most 1mage editing software these

days don’t give us much flexibility to make creative

changes 1n pictures.

For example, let’s say you want to change the appearance
of a 90-year-old person by changing his/her hairstyle. This
can’t be done by the current image editing tools out there.
But guess what? Using GANs, we can reconstruct 1mages

and attempt to change the appearance drastically.






——p
s

y/
T female
1 | black hair
0 [brown hair ©
T make-up
0 | sunglasses

[cGAN
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> 4. Face Synthesis: Synthesis faces in different poses: With a

single input image, we create faces in different viewing angles.

» For example, we can use this to transform 1images that will be easier

for face recognition.

. Synthesis results under various illuminations. The first row is the synthesized image, the second row is the input.
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» b, Image Painting: Repair images have been an

1mportant subject decades ago. GAN is used to repair

images and fill the missing part with created

“content”.
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6. Pix to Pix: Pix2Pix 1s an 1mage-to-image translation that get
quoted 1 cross-domain GAN’s frequently. For example, it converts

a satellite image mto a map (the bottom left).

Labels to Stteet Scene ' Labels to Facade BW to Color

input oupul input oulpul
Day to Night ~ Edges to Photo

output T input outpul input output
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> DeblurGAN performs motion deblurring.

Figure 2: GoPro images [25] processed by DeblurGAN. Blurred — left, DeblurGAN — center, ground truth sharp — right.
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7.Music Generation: GAN can be applied to non-image

domain, like composing music.

S T n»f’jrj fcrc ',,,4 ,JJ]}’

(a) MidiNet model 1

CH——F T | = fr=—====—==:s SSEE
PR R ] 8 2 § F # ==
(b) MidiNet model 2
ﬂj " $ f } 7:_; : ;‘x - _.. ! o 1 ;
C}jjg}ﬂ?'ﬁng J]fﬂjp- ‘QL.@ == fmr. “ I“U;éﬁ‘? ﬂ
Ty ==
(¢) MidiNet model 3

Figure 3. Example result of the melodies (of 8 bars) generated by different implementations of MidiNet.




FUTURE GENERATIONS OF GANS

Improved Medical GANs create high-res images from low-quality
Imaging inputs, aiding in medical diagnoses.

Creative Arts and GANSs produce art, music, and fashion designs
Design indistinguishable from human-made ones.

Video Game GANSs generate realistic textures and landscapes,
Development enhancing visual quality in games.

Deepfake Detection GANs improve techniques for identifying and
& Prevention combating deepfakes, enhancing security.




DIFFERENCES B/W VAN AND GAN

VAE

encoder

e

fake

discriminator
real

real images
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Generative Adversarial

Topics Networlks Variational Autoencoder
Composed of two models (a generator
| Composed of an encoder and a
and a discriminator) that compete with
decoder. The encoder maps inputs to a
. ) each other.
Functionality latent space, and the decoder maps

The generator creates fake samples and
the discriminator attempts to distinguish

between real and fake samples.

points in the latent space back to the

input space.|

Output Quality

Can generate high-quality, realistic
outputs. Known for generating images
that are hard to distinguish from real

ones.

Generally produces less sharp or
slightly blurrier images compared to
GANs. However, this may depend on the
specific implementation and problem

domain.

Training
Stability

Training GANs can be challenging and
unstable, due to the adversarial loss used

in training.

Generally easier and more stable to
train because they use a likelihood-

based objective function.




Thank You
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DEEP BELIEF NETWORKS

We create Deep Belief Networks (DBNs) to address 1ssues with

classic neural networks in deep layered networks.

For example - slow learning, becoming stuck m local minima

owling to poor parameter selection, and requiring a large number of

training datasets of these given input layer.

A DBN 1s a deep-learning architecture mtroduced by Geoffrey
Hinton in 2006. Deep Belief Networks (DBNs) are a type of deep
learning architecture combining unsupervised learning principles

and neural networks.

Deep Belief Networks (DBNs) are sophisticated artificial neural
networks used 1n the field of deep learning.



https://www.analyticsvidhya.com/blog/2022/01/introduction-to-neural-networks/
https://www.analyticsvidhya.com/blog/tag/deep-belief-networks/
https://www.geeksforgeeks.org/artificial-neural-networks-and-its-applications/
https://www.geeksforgeeks.org/introduction-deep-learning/
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They are designed to discover and learn patterns

within large sets of data automatically.

Imagine them as multi-layered networks, where each
layer is capable of making sense of the information
received from the previous one, gradually building

up a complex understanding of the overall data.

They are composed of layers of Restricted
Boltzmann Machines (RBMs), which are trained one

at a time in an unsupervised manner.
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Several Restricted Boltzmann Machines (RBM) can
be stacked and trained in a greedy manner to form

Deep Belief Network architecture.

1.e, It 1s a composition of Stack of Unsupervised

Neural Network such as Restricted Bolzmann

Machine(RBM).

Each RBM has a Visible Layer (Input) and Hidden
Layer (Output)

Here the Hidden Layer in Stack]1 is the Visible Layer
for the Stack2.etc.
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The output of one RBM 1s used as the input to the
next RBM, and the final output i1s used for supervised

learning tasks such as classification or regression.

Here, Each RBM network is trained independently
with their greedy method.

DBNs work similarly to traditional multi-layer
perceptrons (MLPs) and offer certain benefits over
them, including faster training and better weight

initialization.



STRUCTURE OF DEEP BELIEF NETWORK
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In the DBN, we have a hierarchy of layers. The top two layers are
the associative memory, and the bottom layer 1s the visible units.
The arrows pointing towards the layer closest to the data point to

relationships between all lower layers.

y Hidden layer 3
Hidden 1
layer QOOOOOOOH,, l T
IRBM
, Hidden layer 2
Hidden QOOOO000H; | — |QOO0T0O00H,

layer
I RBM ‘

Hidden [ 00000 H| ™ | COOOO000H,| ... COOOOOODH, .
o % A Hidden layer 1
IRBM _
ll'gf i‘: QOO00000D V|  COOO0000OV; (1010101001010 ) 7 l
T

X

Visible layer (observed)




How DEEP BELIEF NETWORK WORKS

RBM training Perform training layer
algorithm J’by layer until the Jast
: layer of RBM
Substitute :
Tr'dining \;isible layers Hldden Softma(
samples layers ‘

> C\ T — i

Given the parameters
and the number of hidden layers




How DEEP BELIEF NETWORK WORKS

The Deep Belief Network (DBN) algorithm consists of

two main steps:
1. Pre Training
2. Fine Tuning

1. Pre Traming: In the pre-training phase, the network learns to

represent the input data layer by layer. Each layer 1s trained
mdependently as an RBM, which allows the network to learn complex

data representations efficiently.

The ensemble’s first layer (often called the mput layer or bottom layer)
mteracts directly with the raw data, learning its features and creating a

latent representation during the process.
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Each subsequent layer 1s then trained so the first’s output becomes

the next’s nput. This greedy layer-wise learning allows for efficient

feature learning.

We iterate this process multiple times, covering various data
samples and updating weights after each pass. Finally, the last layer

(output layer) outputs the network’s prediction.
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2. Fine Tuning: In the fine-tuning phase, the DBN adjusts its

parameters for a specific task, like classification or regression.

Thus 1s typically done using a technique known as backpropagation,
where the network’s performance on a task i1s evaluated, and the

errors are used to update the network’s parameters.

This phase often mvolves supervised learning, where the network is

trained with labelled data.



ALGORITHM

The algorithm for training a DBN can be summarized as follows:
Inmitialize the network with random weights.

Start with the first layer and work your way to the last layer as

you use unsupervised learning to train each layer of the network.

Fine-tune the entire network using supervised learning and back
propagation.

Repeat steps 2 and 3 until the network has converged.



MATHEMATICAL REPRESENTATION

Deep Belief Networks (DBNs) employ several mathematical
concepts, blending probability theory with neural network
structures. At their core, they use Restricted Boltzmann Machines
(RBMs) for layer-wise learning, which are based on probabilistic

graphical models.

1. Energy-Based Model: Each RBM within a DBN 1is an energy-
based model. For an RBM with visible units v and hidden units h,

the energy function 1s defined as:

E(v,h) = — Z;’, a;v; — ZJ- bjhj — ZU 'U_,‘]l_j'l,l.’,jj

Here, a1 and bj are bias terms, and wi represents the weights betwéen
units.



MATHEMATICAL REPRESENTATION

2. Probability Distribution: The probability of a given state of the
RBM 15 defined by the Boltzmann distribution:

H—E[r.h?

P,h) = *—

where Z. 1s the partiion function, a normalization factor calculated

as the sum over all possible pairs of visible and hidden units.



BENEFITS OF DBN

Deep belief networks use probabilistic modeling and a supervised
learning approach to offer certain benefits over conventional neural

networks. These include:

Ability to handle large data using hidden units to extract underlying

correlations.

Faster training and better results. Achieving global minima due to

better weights imtialization.

Model Interpretability: Like many deep learning models, DBNs

can act as "black boxes," making it difficult to understand how they

are making predictions or what features they have learned.


https://deepai.org/machine-learning-glossary-and-terms/deep-learning

APPLICATIONS OF DBN

Deep Belief Networks (DBNs) have been applied mn a variety of
fields, ncluding:

Computer vision: DBNs have been used for tasks like recognizing

objects In pictures or putting pictures into different groups.

Speech recognition: DBNs have been used for speech recognition

tasks, such as transcribing speech mto text.

Natural language processing: DBNs have been used for natural

languages processing tasks, such as sentument analyvsis and text

classification.



https://spotintelligence.com/2022/12/16/sentiment-analysis-tools-in-python/
https://spotintelligence.com/2022/12/20/text-classification-python/
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Recommender systems: DBNs have been used mn recommender

systems, which give users suggestions based on what they like and

how they act.

In bioinformatics, DBNs have been used to predict how proteins

will interact with each other, look at how genes are expressed, and

find new drugs.

Financial analysis: DBNs have been used to predict the stock

market and figure out how risky something is.


https://en.wikipedia.org/wiki/Recommender_system#:~:text=A%20recommender%20system%2C%20or%20a,pertinent%20to%20a%20particular%20user.

KEY POINTS

DBNs have been a crucial part of the deep learning ecosystem.

Here’s what you need to know about them:

Deep Belief Networks are constructed by stacking multiple

Restricted Boltzmann Machines.

We train each RBM in the stack independently with greedy
learning.

Traming DBNs consists of an unsupervised pre-training phase

followed by supervised fine-tuning.



KEY POINTS

DBNs understand latent data representations and can generate new

data samples.
DBNSs are also employed 1 classification, motion capture, speech
recognition, etc.

The DBN architecture 1s not very popular today and has entirely
been replaced by other Deep Learning algorithms like CNN and
RNN.



Thank You
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Topics :

Generative Adversarial Network
» Architecture of GAN
> Mathematical Notation
> Loss Function GAN
> Training Process of GAN
~ Types of GAN
> Applications of GAN
~ Future generations of GAN

» Differences b/w VAN and GAN



(GENERATIVE ADVERSARIAL NETWORKS
(GANS)

» Generative Adversarial Networks (GANSs) are a powerful class of
neural networks that are used for unsupervised learning. It was

developed and introduced by Ian J. Goodfellow in 2014.

» Generative modeling generates unstructured data such as new

Images or text or Videos.

> GAN 1s a class of algorithmic Deep learning framework having two

neural networks that connect and can analyze, capture and copy the

variations within a dataset.
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To understand the term GAN let’s break it into separate three
separate  Words. and each of them has its separate

meaning, which is as follows:

1. Generative - To learn a generative model, which describes how

data is generated in terms of a probabilistic model. In simple words, 1t

explains how data is generated visually.

2. Adversarial - The training of the model 1s done 1n an adversarial

setting. 1.e, The word adversarial refers to the context of GANs, the

generative result 1s compared with the actual images in the data set.
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This mechanism known as a discriminator and this 1s used to apply
a model that attempts to distinguish between real and fake images.

3. Networks - Use deep neural networks as artificial intelhigence (Al)

algorithms for training purposes.

(GANSs are a tvpe of neural network architecture that

can generate new data based on the patterns learned

from a given dataset.

This means that GANs can create entirely new,
realistic images, videos, and even audio clips that

have never existed before.


https://www.projectpro.io/article/5-different-types-of-neural-networks/431

ARCHITECTURE OF GAN

Generative Adversarial Networks (GANs) are a groundbreaking
innovation in the field of Deep Learning, particularly within the

domain of unsupervised learning.

GANs are made up of two neural networks,

1. Generator and
2. Discriminator

These 2 models that automatically discover and learn the patterns in

input data.


https://www.geeksforgeeks.org/neural-networks-a-beginners-guide/
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They comprise two networks:

The generator, which produces synthetic data. 1.e, information that
1s artificially generated rather than produced by real-world events

and

The discriminator, which differentiates between real and generated
data. This unique structure enables GANs to generate highly

realistic and diverse outputs, from 1mages to text.
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Back Ptopeggtion: Maximize Error
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The Generator: The generator network 1s responsible for generating

new data that 1s similar to the training data. The generator network
takes random noise as mnput and produces a generated output. The
goal 15 to train the generator to produce outputs that are as close to

the real data as possible.

A Generator in GANs 1s a neural network that creates fake data to

be trained on the discriminator.

Generator network Fake Image

-
oo
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=
3
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©
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"The main aim of the Generator 1s to make the discriminator
classify its output as real. The part of the GAN that trains the

Generator mcludes:

Provide fake mput or noise and get random noise to produce

output based on the noise sample.
Predict generator output either real or fake using discriminator.
Calculate discriminator loss and perform back propagation.

Calculate gradients to update the weights of the generator.
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Back propagation of Generator: The generator modifies some data

attributes by adding noise (or random changes) to certain attributes
The generator passes the modified data to the discriminator

The discrimmator calculates the probability that the generated

output belongs to the original dataset

The discriminator gives some guidance to the generator to reduce

the noise vector randomization in the next cycle

The generator attempts to maximize the probability of mistake by
the discriminator, but the discriminator attempts to minimize the

probability of error.



CONTD..

In training iterations, both the generator and discriminator iterating
continuously until they reach an equilibrium state. In the

equilibrium state, the discriminator can no longer recognize

synthesized data. At this point, the training process is over.

Real Images - ? Sample

$507
1018UIWLISIq

Generator - Sample 1 Discriminator

Random Input
e R WIS IEIVED)

4  Backpropagation




CONTD..

The Discriminator: In a GAN, the discriminator acts as a binary

classifier whose main task 1s to differentiate between real data and
data generated by the GAN's generator. The choice of network

architecture for the discriminator depends on the type of data being
classified.

The Discriminator 1s a neural network that identifies real data from
the fake data created by the Generator. The discriminator's traming

data comes from different two sources:

The real data instances, such as real pictures of birds, humans,
currency notes, etc., are used by the Discriminator as positive

samples during training.
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The fake data instances created by the Generator are used as

negative examples during the training process.

Real Images

Discriminator
Network

Fake Image

While training the discriminator, 1t connects to two loss functions.
During discriminator training, the discriminator ignores gthe

generator loss and just uses the discriminator loss.
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Next, The discriminator wupdates 1its weights through

backpropagation from the discriminator loss through the

discriminator network.
S  Backpropagation
o
s
Real Images Sample Discriminator g )
5
S
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= ®
g - Generator : Sample 1
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MATHEMATICAL NOTATION

We are basically training the Discriminator to maximize the
probability of assigning correct labels to both real and generated
data.

We are also training the Generator to minimize the probability to

get caught by the Discriminator, which 1s equivalent to minimizing
log(1-D(G(2))).
here the Discriminator is trying to minimize its reward V(D, G) and

the Generator 1s trying to minimize the Discriminator’s reward or

i other words, maximize its loss.



MATHEMATICAL NOTATION

min max V (D, G)
& P

V(D,G) = Eypioraz)logD(x)] + E, .. () [log(1l — D(G(2))]

where, G = Generator, D = Discriminator

Pdata(x) = distribution of real data

C e : Real dat
P(z) = distribution of generator e

2z Latent vector

x = sample from Pdata(x) G(2) : Fake data

z = sample from P(z) D(z) : Discriminator’s evaluation of real data

D(x) = Discriminator network D(G(z)) : Discriminator’s evaluation of fake data

G(z) = Generator network



Lo0SS FUNCTIONS IN GAN

The traming process for GANs involves minimizing a loss function

that quantifies the difference between the generated and real data.

There are two types of Loss Functions:

1. Generator Loss

2. Discriminator Loss

1. Generator Loss: The objective of the generator in a GAN is to

produce synthetic samples that are realistic enough to fool the

discriminator. The generator achieves this by minimizing its loss

function JaG.
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The loss 1s minimized when the log probability 1s maximized, 1.e.,
when the discriminator 1s highly likely to classify the generated

samples as real. The following equation 1s given below:

Jg = iZj”_llogD(G(z,‘))

I

The generator aims to mimimize this loss, encouraging the

production of samples that the discriminator classifies as real

(logD(G(z2)), close to 1.
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2. Discriminator lLoss: The discriminator reduces the

negative log likelihood of correctly classifying both

produced and real samples.

Jp=

1

m !1

' log D(z :)-—Z” log(1-D(G())




TRAINING PROCESS OF GAN

Step 1: Define a Problem.

Step 2: Select Architecture of GAN.

Step 3: Train Discriminator on Real Dataset.
Step 4: Train Generator.

Step 5: Tram Discriminator on Fake Data.

Step 6: Train Generator with the output of Discriminator.

O 0 0 0 O

Define Select Train Generate Train Train
Architecture Discriminator Fake Discriminator Generator

d ith th
of GAN ©OnReal |nputsfor on Fake :.:tput gf

Problem Data Generator Data Discriminator




TYPES OF GAN

Vanilla GAN

Conditional GAN (CGAN)

Deep Convolutional GAN
(DCGAN)

CycleGAN

Generative Adversarial Text to
Image Synthesis

StyleGAN

Super Resolution GAN (SRGAN)
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» 1. Vanilla GAN: This 1s the most basic form of GAN, where both

the generator and discriminator are modeled using multi-layer

perceptrons.

» The generator focuses on capturing data distribution, while the
discriminator evaluates the probability that a given sample 1s real or

synthetic.

» This Vanilla GAN always tries to optimize the

mathematical equation using stochastic gradient

descent.



https://www.geeksforgeeks.org/ml-stochastic-gradient-descent-sgd/
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ARCHITECTURE OF VANILLA GAN
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EXAMPLE OF VANILILA GAN
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2. Conditional GAN: CGAN can be described as a deep

learning method 1 which some conditional parameters are put into

place.

Here, both networks receive additional mmformation such as class
labels, making the model conditional. This allows the generation of

data that 1s more specific to the given condition.

In CGAN, an additional parameter ‘y’ 1s added to the Generator

for generating the corresponding data.

Labels are also put into the input to the Discriminator in order for
the Discriminator to help distinguish the real data from the fake
generated data.


https://www.geeksforgeeks.org/conditional-generative-adversarial-network/
https://www.geeksforgeeks.org/introduction-deep-learning/
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Conditional GAN

c: train »

G » Image x = G(c,z)
Normal distribution z »

» X is realistic or not +
scalar

» (better) ¢ and x are matched or not

True text-image pairs: (train, @ ) i

(cat, H) 0 (train, mage ) O

Example of Conditional GAN
(CGAN)
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3. Deep Convolutional GAN (DCGAN): DCGANs

employ convolutional neural networks, making them more effective

for tasks that mmvolve image data. They are known for generating

high-quality, high-resolution images.

Deep Convolutional GAN (DCGAN) was proposed by a researcher
from MIT and Facebook AI research. It 1s widely used in many

convolution-based generation-based techniques.

It 1s composed of ConvNets in place of multi-layer perceptrons.

DCGAN uses convolutional and convolutional-transpose layers in_the

generator and discriminator, respectively. It was proposed by Radford.


https://www.blockchain-council.org/ai/convolution-neural-network/
https://www.geeksforgeeks.org/visualization-of-convents-in-pytorch-python/
https://www.geeksforgeeks.org/multi-layer-perceptron-learning-in-tensorflow/
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» Here the discriminator consists of strided convolution layers, and
Relu as activation function.. The generator consists of

convolutional-transpose layers, and ReLU activations. The output

will be a 3x64x64 RGB 1mage.

!
4

100 z <( b | ) -1
km’“"'“'" = =21
J 4 =

Project and reshape

Architecture of Deep Convolution GAN
(DCGAN)
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I
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- Training feedback |
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--| Structure of Generator —_——

Example of DCGAN (DCGAN)
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First Many attempts Even more
attempt later attempts later

™ DISCRIMINATOR S

Example of DCGAN (DCGAN)
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4. Cycle GAN: Cycle GAN 1s used to transfer characteristic of one

image to another or can map the distribution of images to another.

In CycleGAN we treat the problem as an 1mage reconstruction
problem. We first take an 1mage mput (x) and using the generator

G to convert into the reconstructed 1mage.

Then we reverse this process from reconstructed image to original

Image using a generator F.

Then we calculate the mean squared error loss between real and

reconstructed image.
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The most important feature of this cycle_ GAN 1s that 1t can do this

image translation on an unpaired image where there 1s no relation

exists between the mnput image and output image.

DY horse ﬂh horse
A
Y*
generator 1 generator 2
zebra
Architecture of Cycle GAN

(CGAN)
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0 5. Generative Adversarial Text to Image Synthesis: Text to image

synthesis (T'2I) i1s one of the most challenging and interesting tasks
in the modern domain of Computer Vision. These GANs can
generate images from textual descriptions, bridging the gap between

natural language and visual data.

Generative Adversarial Text to Image Synthesis

This flower has small, round violet This flower has small, round violet
;o ' petals with a dark purple center

petals with a dark purple center

Generator Network Discriminator Netwm;h ;

Architecture of Text to Image Synthesis
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This bird 1s The bird has Thisisasmall, This bird is

This bird is This bird has A white bird white, black, small beak, black bird with  white black and
Text  blue with white  wings thatare  with a black and brown in with reddish a white breast  yellow in color,
description and hasavery  brownand has  crown and color, with a browncrown  and whitton  with a short
short beak ayellowbelly  yellow beak brown beak and gray belly  the wingbars. black beak

Stage-I

images - \

Stage-11
images

Example
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6. Style GAN: Style GAN proposes a lot of changes in the

generator part.

StyleGAN was designed to create realistic 1mages while
manipulating and controlling certain features or styles of the image.
These styles associated with the generated images could be features

like color, texture, pose, etc.
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Start

l Input (Random Vector)

Mapping
Network

l Style Vector
Generator

l Cenerated Image

Discriminator

l

Output

StyleGAN [Fetce/es!

Architecture of Text to Image Synthesis
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First, StyleGAN takes a random vector as an input. This vector 1s
mapped mto a style vector representing different aspects of the

image's style and appearance.

The generator network then generates an 1mage using the style

vector.

The discriminator network evaluates whether the generated image

1s real or fake (generated).
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7. Super Resolution GAN (SRGAN): SRGAN enhances the

resolution of images, turning low-resolution mputs into high-

resolution outputs without losing detail.

SRGAN was proposed by researchers at Twitter. The motive of
this architecture 1s to recover finer textures from the image when

we upscale 1t so that it’s quality cannot be compromused.
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Example of Super Resolution GAN




APPLICATIONS OF GAN

In real ttme.

They generate high quality and photo realistic Images, Videos

1. Image to Image Translation: GANs Can be in use for

translating data from 1mages. In 1mage-to-image translations, GAN’s

account for tasks such as:
Changing sketches to color photographs.
Converting satellite images to google maps.
Translation of photos from day to night and vice versa.

Translation of black and white photographs to color.
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StarGAN 1s an Image-to-image translation for one domain to

another. For example, given a happy face, we want to transform it

mnto a fearful face.

Input Blond hair Gender
[ = S au ! . »n -2

Aged Pale skin Input Angry Happy Fearful
g m i ' ! ' ' .

= W

O _ ) " () OB =




CONTD..

2. Image Editing: Most 1mage editing software these

days don’t give us much flexibility to make creative

changes 1n pictures.

For example, let’s say you want to change the appearance
of a 90-year-old person by changing his/her hairstyle. This
can’t be done by the current image editing tools out there.
But guess what? Using GANs, we can reconstruct 1mages

and attempt to change the appearance drastically.
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> 4. Face Synthesis: Synthesis faces in different poses: With a

single input image, we create faces in different viewing angles.

» For example, we can use this to transform 1images that will be easier

for face recognition.

. Synthesis results under various illuminations. The first row is the synthesized image, the second row is the input.
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» b, Image Painting: Repair images have been an

1mportant subject decades ago. GAN is used to repair

images and fill the missing part with created

“content”.




CONTD..

6. Pix to Pix: Pix2Pix 1s an 1mage-to-image translation that get
quoted 1 cross-domain GAN’s frequently. For example, it converts

a satellite image mto a map (the bottom left).

Labels to Stteet Scene ' Labels to Facade BW to Color

input oupul input oulpul
Day to Night ~ Edges to Photo

output T input outpul input output
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> DeblurGAN performs motion deblurring.

Figure 2: GoPro images [25] processed by DeblurGAN. Blurred — left, DeblurGAN — center, ground truth sharp — right.
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7.Music Generation: GAN can be applied to non-image

domain, like composing music.
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Figure 3. Example result of the melodies (of 8 bars) generated by different implementations of MidiNet.




FUTURE GENERATIONS OF GANS

Improved Medical GANs create high-res images from low-quality
Imaging inputs, aiding in medical diagnoses.

Creative Arts and GANSs produce art, music, and fashion designs
Design indistinguishable from human-made ones.

Video Game GANSs generate realistic textures and landscapes,
Development enhancing visual quality in games.

Deepfake Detection GANs improve techniques for identifying and
& Prevention combating deepfakes, enhancing security.




DIFFERENCES B/W VAN AND GAN

VAE

encoder
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fake

discriminator
real

real images
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Generative Adversarial

Topics Networlks Variational Autoencoder
Composed of two models (a generator
| Composed of an encoder and a
and a discriminator) that compete with
decoder. The encoder maps inputs to a
. ) each other.
Functionality latent space, and the decoder maps

The generator creates fake samples and
the discriminator attempts to distinguish

between real and fake samples.

points in the latent space back to the

input space.|

Output Quality

Can generate high-quality, realistic
outputs. Known for generating images
that are hard to distinguish from real

ones.

Generally produces less sharp or
slightly blurrier images compared to
GANs. However, this may depend on the
specific implementation and problem

domain.

Training
Stability

Training GANs can be challenging and
unstable, due to the adversarial loss used

in training.

Generally easier and more stable to
train because they use a likelihood-

based objective function.
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