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 Restricted Boltzmann Machine is an undirected

graphical model that plays a major role in Deep

Learning Framework in recent times.

 It was initially introduced as Harmonium by Paul

Smolensky in 1986 and it gained big popularity in recent

years in the context of the Netflix Prize by

using Collaborative Filtering.

 Restricted Boltzmann Machine (RBM for short) is a

versatile feature extraction method.

RESTRICTED BOLTZMANN MACHINE

https://en.wikipedia.org/wiki/Netflix_Prize


 It is an algorithm which is useful for

i) Dimensionality Reduction

ii) Classification

iii)Regression

iv) Collaborative filtering, etc.

 The Name suggests, The “restricted” part of the name

“Restricted Boltzmann Machines” means

 Restrict: No Visible unit is connected to any other Visible

Unit

 No Hidden Unit is connected to any other Hidden Unit.

CONTD..
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Boltzmann Machine Restricted Boltzmann Machine



 The main difference between a Boltzmann machine

and a restricted Boltzmann machine is that there is

no intra layer communication, i.e, the nodes of the

same layer are not connected which makes them

independent from each other.
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 There are mainly two types of Restricted Boltzmann Machine

(RBM) based on the types of variables they use:

 Binary RBM: In a binary RBM, the input and hidden units are

binary variables. Binary RBMs are often used in modeling binary

data such as images or text.

 Gaussian RBM: In a Gaussian RBM, the input and hidden units are

continuous variables that follow a Gaussian distribution. Gaussian

RBMs are often used in modeling continuous data such as audio

signals or sensor data.

TYPES OF RBM



 Layers: Restricted Boltzmann Machines are shallow, two-layer

neural nets that constitute the building blocks of deep-

belief networks.

 The first Layer of the RBM is called the visible, or input layer,

and

 The Second Layer is the Hidden Layer.

 Each circle represents a

Neuron-like unit called a node.

The nodes are connected to each other

across layers, but no two nodes

of the same layer are linked.

WORKING PRINCIPLE OF RBM



 Each visible node takes a low-level feature from an

item in the dataset to be learned.

 At node 1 of the hidden layer, x is multiplied by

a weight and added to a bias.

 The result of those two operations is fed into

an activation function, which produces the node’s

output, or the strength of the signal passing through

it, given input x.
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 Next, let’s look at how several inputs would combine at one hidden node.

 Each x is multiplied by a separate weight, the products are summed,

added to a bias, and again the result is passed through an activation function

to produce the node’s output.
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 At each hidden node, each input x is multiplied by its respective

weight w. i.e, a single input x would have three weights here,

making 12 weights altogether (4 input nodes x 3 hidden nodes).

 The weights between the two layers will always form a matrix

where the rows are equal to the input nodes, and the columns are

equal to the output nodes.

 Each hidden node receives the four inputs multiplied by their

respective weights.

 The sum of those products is again added to a bias (which forces at

least some activations to happen), and the result is passed through

the activation Function producing one output for each hidden

node.



RECONSTRUCTION OF RBM

 The Learning process consisting of several Forward and Backward

passes.

 In the Forward Pass, RBM takes the inputs and Translates them

into a set of numbers that encode the Inputs

 In the Backward Pass, It takes the set of numbers and translates

them back to form the Reconstructed Inputs.

 In Reconstruction, the logic is pretty simple. You have the

activations, which are the inputs at this point and then passed to the

hidden layer and then to the input later.

 After this, new biases are obtained, and the reconstruction is the

new output.
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TRAINING OF RESTRICTED BOLTZMANN MACHINE

 In RBM there are Three Steps through which the entire RBM works:

 Step-1: FORWARD PASS: In this phase, we take the input layer and

using the concept of weights and biased we are going to activate the

hidden layer. This process is said to be Feed Forward Pass. In Feed

Forward Pass we are identifying the positive association and negative

association.

Feed Forward Equation:

Positive Association — When the association between the visible unit

and the hidden unit is positive.

Negative Association — When the association between the visible unit

and the hidden unit is negative.



CONTD..

 For eg: In Forward Pass, The input image is converted into Binary

Values.

 Then the vector input is fed into the network, where:

 Its values are multiplied by weights and bias is added

 Then the result goes through the Activation Function, Such as

Sigmoid Function,

 Then it represents the Probability

of the node activation.

 i.e, it represents the which neuron

may or may not active.



CONTD..

Step-2:BACK WARD PASS: As we don’t have any output layer.

Instead of calculating the output layer, we are reconstructing the input

layer through the activated hidden state.

This process is said to be Feed Backward Pass. We are just

backtracking the input layer through the activated hidden neurons.

After performing this we have reconstructed Input through the

activated hidden state. So, we can calculate the error and adjust

weight in this way:
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 For eg: In Backward Pass, The data that is passed backward.

 It is also combined with the same weights and bias.

 Once the information gets to the visible Layer , the shape of the

probability distribution of the input values, sampling the

distribution, the input is reconstructed.



CONTD..

Step-3: Accessing Reconstruction Quality: Quality is compared by the

original data.

The RBM calculates the error and adjust the weights and bias in

order to minimize it.

Error = Reconstructed Input Layer-Actual Input layer

Adjust Weight = Input*error*learning rate (0.1)



INTERNAL TRAINING OF RESTRICTED BOLTZMANN MACHINE

 The training of the Restricted Boltzmann Machine differs from

the training of regular neural networks via stochastic

gradient descent.

 Here, Visible Units only talk to Hidden Units and

 Hidden Units talk to Visible Units.
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 The Two main Training steps are:

1. Gibbs Sampling: The first part of the training is called Gibbs

Sampling. Given an input vector v we use p(h|v)for prediction of

the hidden values h.

 Remember that we all know about P(A/B). Ie, we are fining the

probability of A given B.

 In the same way, P(hj=1|V) is that given the input vector V, trying

to calculates the values of the Hidden Vector.
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For prediction of new input values v. This process is

repeated k times. After k iterations, we obtain another input

vector v_k which was recreated from original input values v_0.
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2. Contrastive Divergence step: The update of the weight matrix

happens during the Contrastive Divergence step.

Vectors v_0 and v_k are used to calculate the activation

probabilities for hidden values h_0 and h_k :
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 The difference between the outer products of those probabilities

with input vectors v_0 and v_k results in the updated matrix :

 Using the update matrix the new weights can be calculated with

gradient ascent, given by:

 Finally, Contrastive divergence (CD) algorithm is used to train the

RBM. The algorithm performs Gibbs sampling and is used inside

a gradient descent procedure (similar to the way back propagation

is used inside such a procedure when training feed forward neural

nets) to compute weight update.



USE CASES OF RBM

 Pattern recognition : RBM is used for feature extraction in

pattern recognition problems where the challenge is to

understand the hand written text or a random pattern.

 Recommendation Engines : RBM is widely used for

collaborating filtering techniques where it is used to predict

what should be recommended to the end user. so that the user

enjoys using a particular application or platform.

 For eg : Movie Recommendation, Book Recommendation



APPLICATIONS OF RBM

Hand Written Digit Recognition is a very common problem these days

and is used in a variety of applications like criminal evidence, office

computerization, check verification, and data entry applications.

It also comes with challenges like different writing style,

variations in shape and size as well as image noise, which leads to

changes in numeral topology.

In this a hybrid RBM-CNN methodology is used for digit

recognition.

First, features are extracted using RBM deep learning

algorithms. Then extracted features are fed to the CNN deep learning

algorithm for classification.
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RBMs are highly capable for extracting features from input

data. It is designed in such a way that it can extract the features from

large and complex datasets by introducing hidden units in an

unsupervised manner.
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 Autoencoders fall under unsupervised learning algorithms as they

learn the compressed representation of the data automatically from

the input data without labels.

 In Autoencoders Name,

 AUTO means =self

 ENCODERS means- Convert into different form (reduced Dimensions)

 Autoencoders (AEs) are a type of neural network architecture that

is able to find a compressed representation of the input data such

as image, video, text, speech, etc..

 They became a popular solution for reducing noisy data.

AUTOENCODERS



 Autoencoders are used to reduce the size of our inputs into a

smaller representation. If anyone needs the original data, they can

reconstruct it from the compressed data.

 Autoencoders are a specific type of feed forward neural networks

trained to copy its input to output.

 The aim of an autoencoder is to learn a lower-dimensional

representation (encoding) for a higher-dimensional data, typically

for dimensionality reduction, by training the network to capture the

most important parts of the input image.

CONTD..

https://www.v7labs.com/training


ARCHITECTURE OF AUTOENCODERS

 Autoencoders consist of 3 parts:

An autoencoder replicates the data from the input to the output in

an unsupervised manner and is therefore sometimes referred to

as a replicator neural network.
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 A generic way to define an autoencoder using a

mathematical notional will be f(x) = h,

 where x is the input data and h is the latent

variables in the information bottleneck. This formula

denotes the encoder part of the network

 The basic goal of an autoencoder is to make the

output x as close to the input x as possible.

 Now it cannot always be done if the number of

neurons in the middle layer is much smaller than

in the bottom or the top.



 Encoder: An encoder is a feed forward, fully connected

neural network.

 The encoder is the first part of the autoencoder and is

responsible for transforming the input data into a

compressed representation. This compressed

representation is often referred to as the latent space or

bottleneck.

 The encoder consists of one or more layers of neurons,

typically implementing non-linear activation functions

like ReLU (Rectified Linear Unit) to capture complex

patterns in the input data.

 First, the encoder takes the input and encodes it. For

CONTD..



 First, the encoder takes the input and encodes it. For

example, let the input data be x. Then, we can define the

encoded function as f(x).

 Code: Code is the representation of compressed input

which applies to the decoder. This part of the network

is also refer as bottleneck. It balances two factors

such as which part of information to be taken and

which part of information to be discarded.

CONTD..



 Decoder: This layer decodes the encoded image back to the

original dimension. The decoded image is a lossy reconstruction of

the original image and it is reconstructed from the latent space

representation.

 The layer between the encoder and decoder, ie. the code is also

known as Bottleneck. The bottleneck layer is the layer in the

middle of the autoencoder, where the compressed representation is

stored.

 It has a smaller number of neurons compared to the input and

output layers, effectively reducing the dimensionality of the data.
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 Essentially, we split the network into two segments, the encoder,

and the decoder.

MATHEMATICAL REPRESENTATION

 The encoder function, denoted by ϕ, maps the original data X,

to a latent space F, which is present at the bottleneck.

 The decoder function, denoted by ψ, maps the latent space F at

the bottleneck to the output.

 The output, in this case, is the same as the input function. Thus, we are

basically trying to recreate the original image after some generalized non-linear

compression.
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 The encoding network can be represented by the standard

neural network function passed through an activation function,

where z is the latent dimension

 Similarly, the decoding network can be represented in the same

fashion, but with different weight, bias, and potentially activation

functions being used.
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 The loss function can then be written in terms of these network

functions, and it is this loss function that we will use to train the

neural network through the standard back propagation

procedure.
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EXAMPLE

In this example, you can observe the following steps:

 The input a digit into the autoencoder.

 The encoder sub network generates a latent representation of the

digit 4 which is considerably smaller in dimensionality than the

input.

 The decoder sub network reconstructs the original digit using the

latent representation.



 1. Unsupervised Leaning: Autoenoders are considered as

unsupervised learning technique. Since they don’t need

explicit labels to train on.

 2. Data-specific: Autoencoders are only able to compress data

similar to what they have been trained on.

 3. Lossy: The decompressed outputs will be degraded

compared to the original inputs.

 4. Learned automatically from examples: It is easy to train

specialized instances of the algorithm that will perform well on

a specific type of input.

PROPERTIES OF AUTOENCODERS



PARAMETERS OF AUTOENCODERS

here are 4 hyperparameters that we need to set before

training an autoencoder:



 Code size: It represents the number of nodes in the middle layer.

Smaller size results in more compression.

 Number of layers: The autoencoder can consist of as many layers

as we want.

 Number of nodes per layer: The number of nodes per layer

decreases with each subsequent layer of the encoder, and increases

back in the decoder. The decoder is symmetric to the encoder in

terms of the layer structure.
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 Loss function: We either use mean squared error

or binary cross-entropy. If the input values are in the

range [0, 1] then we typically use cross-entropy,

otherwise, we use themean squared error.

CONTD..



TRAINING OF AUTOENCODERS
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Step-1: WE start with an Array where the lines(the observations)

correspond to the users and the columns(the Features) corresponds to

the Movie.

Each Cell (u,i) contains the rating from 1 to 5 , 0 has no

rating of the movie i by the user u
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Step-2:
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Step-3:
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Step-4:
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Step-5:
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Step-6:
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Step-7:
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Step-8:



 1. Image Coloring: Autoencoders convert any black and

white image into a colored image. Depending on

what is in the picture , it is possible to tell what the

colour should be

APPLICATIONS OF AUTOENCODERS



 2. Feature Variations: Autoencoders extract required

features from the original input image and then

generate noise free output image.

CONTD..



 3. Dimensionality Reduction: The reconstructed image

is the same as our input but reduced dimensions. It

helps in providing the similar image with a reduced

Pixel value.
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 4. Denoising Image: A denoising autoencoder is trained to

reproduce the clean image from the corrupted/noisy

version.
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 5. Watermark Removal: It is also used for removing

watermarks from images or to remove any object

while filming a video or a movie.
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 Autoencoder models are commonly used for image processing

tasks in computer vision.

 In this use case, the input is an image and the output is a 

reconstructed image. The model learns to encode the image into a 

compressed representation

HOW AUTOENCODER WORKS IN COMPUTER VISION



 let's suppose we've trained an autoencoder model on a

large dataset of faces with a encoding dimension of

6.

 An ideal autoencoder will learn descriptive attributes

of faces such as skin color, whether or not the

person is wearing glasses, etc. in an attempt to

describe an observation in some compressed

representation.

LIMITATIONS OF AUTOENCODERS
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 In the example above, we've described the input image

in terms of its latent attributes using a single value

to describe each attribute.

 However, we may prefer to represent each latent

attribute as a range of possible values.

 Using a variational autoencoder, we can describe latent

attributes in probabilistic terms.
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 With this approach, we will now represent each latent

attribute for a given input as a probability

distribution.

 When decoding from the latent state, we will

randomly sample from each latent state

distribution to generate a vector as input for our

decoder model.
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Note: For variational autoencoders, the encoder model is sometimes

referred to as the recognition model whereas the decoder model is

sometimes referred to as the generative model.



 At this point, a natural question that comes in mind is

“what is the link between autoencoders and content

generation?”.

 Here, once the autoencoder has been trained, we

have both an encoder and a decoder but still no real

way to produce any new content.

 At first sight, we could be tempted to think that, if the

latent space is regular enough (well “organized” by

the encoder during the training process)

LIMITATIONS OF AUTOENCODER



 we could take a point randomly from that latent space and decode

it to get a new content.

 The decoder would then act more or less like the generator.

 But here we can’t know how to get the decoder data.

 Suppose Autoencoder gives Good Results, OK well. But is does

not gives the Good Results, there is a Problem.

 i.e, we have raised one question in our mind? How can Latent

Space generate the samples.

 Lastly, autoencoders may not always generalize well to new, unseen

data.
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 This limitation is a challenge in applications where the model must

perform well on data that is significantly different from the training

set.

 Misunderstanding import variables

 Insufficient Training Data

 Imperfect decoding

 Generative Modeling
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 Another Real Time Example: Using an autoencoder that

compresses the famous MNIST 28 × 28 handwritten digits dataset.

We use the following neural network architecture, which has a two-

dimensional latent space:
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 After training our autoencoder (by minimizing its loss function via

stochastic gradient descent), we find these encodings of the

handwritten digits in our validation set, grouped by their labels 0–9:
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 and pass the vector at each lattice site through the

decoder, then we generate the following “fake”

handwritten digits:

CONTD..



 While many images have good quality, others are

blurry or incomplete because their sites are far

from the point cloud.

 Drawback is :

 The quality of the generated handwritten digits is

worse than in the two-dimensional case.

 Because two-dimensions is usually too small to

capture the nuances of complicated data, this is

not good news.

 So we can introduced the advanced Topic Variational

Autoencoder.

CONTD..
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 A more recent type of autoencoder model is the Variational

autoencoder (VAE) introduced by Kingma and Welling at Google

introduced in the year 2013.

 The VAE is similar to compression and Denoising autoencoders in

that they are all trained in an unsupervised manner to reconstruct

inputs.

 Variational Autoencoders (VAEs) are generative models explicitly

designed to capture the underlying probability distribution of a

given dataset and generate novel samples.

VARIATIONAL AUTOENCODER



 We can fix these issues of Autoencoders, we can make two changes

to the autoencoder. The result is the “variational autoencoder.”

 However, the mechanisms that the VAEs use to perform training

are quite different. In a compression/denoising autoencoder,

activations are mapped to activations throughout the layers, as in a

standard neural network; comparatively, a VAE uses a probabilistic

approach for the forward pass.

 First, we map each point x in our dataset to a low-dimensional

vector of means μ(x) and variances σ(x)2 for a diagonal multivariate

Gaussian distribution.

ARCHITECTURE OF VARIATIONAL AUTOENCODER
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 The encoder-decoder architecture lies at the heart of Variational

Autoencoders (VAEs), distinguishing them from traditional

autoencoders. The encoder network takes raw input data and

transforms it into a probability distribution within the latent space.

 i.e, the latent code generated by the encoder is a probabilistic

encoding, allowing the VAE to express not just a single point in the

latent space but a distribution of potential representations.
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What is the use of two terms:



 First we can stats with Encoder Part: Here variance values are

Inherently Positive, ie we can cover the entire real number

spectrum from ( -∞ to + ∞).

 Now this approach enables us to employ the neural network as the

encoder to transform input images into both Mean and

Logarithmic Variance Vectors.

 Here Z-Mean represents the Mean Point.

 Here Z- log_Var represents the

Logarithmic variance of each Dimension.
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 Next, we generate Sample point Z, from the distribution defined by

sample distribution. After that we can given to Decoder.

 Suppose there is a loss in the expected output.

 Variational autoencoder uses KL-divergence as its loss

function, the goal of this is to minimize the

difference between a supposed distribution and

original distribution of dataset.



 Mathematically,

CONTD..



 In reconstruction Phase, instead of directly sampling from

z_mean & Z_log_var , we use re-parameterized trick by the use of

Back propagation Algorithm.

 In our example, you approximate z using the decoder parameters

and another parameter ε as follows:

 We start by Sampling epsilon from a standard normal distribution.

 where μ and σ represent the mean and Variance of a Gaussian

distribution respectively. They can be derived from the decoder

output.

 Here, we can add the Epsilon random value between (0,1).
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 The Re parameterized Trick keeps all randomness with epsilon,

ensuring deterministic gradients.

 These deterministic gradients are mainly used for back propagation

through layer and effective neural network training.
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 When using only the KL Loss , the Latent Space ends up with

encodings scattered randomly near its centers, without considering

similarity among nearby encodings.

 When optimizing both the KL Loss and another Loss together, it

creates a latent space where nearby encodings are similar, forming

clusters on a local scale.

WHY WE NEED BOTH RECONSTRUCTION AND KL LOSS



 Mathematically,

CONTD..



DIFFERENCE BETWEEN RBN AND AUTOENCODER

Autoencoder is a simple 3-layer neural network where output

units are directly connected back to input units. Typically, the

number of hidden units is much less than the number of visible

ones.

The task of training is to minimize an error or reconstruction, i.e.

find the most efficient compact representation for input data.

Restricted Boltzmann Machines are, two-layer neural nets that

constitute the building blocks of deep-belief networks. The first

layer of the RBM is called the visible, or input layer, and the

second is the hidden layer.

https://www.edureka.co/blog/autoencoders-tutorial/
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DIFFERENCE BETWEEN AUTOENCODER & VAE 



DIFFERENCE BETWEEN AUTOENCODER & VAE



 Mathematically,
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 Unsupervised pre-training is a Deep Learning technique that

leverages unlabeled data to learn a preliminary model, which can

then be fine-tuned with a smaller amount of labeled data. This

approach is particularly beneficial in scenarios where labeled data is

scarce or expensive to obtain.

 Unsupervised pre-training is a technique involves unlabeled data to

learn features and data distribution:

UNSUPERVISED PRETRAINED NETWORKS



 1. Pre-training : The model is trained on a large amount of

unlabeled data using unsupervised learning algorithms like

generative models or autoencoders. This phase helps the model

learn the underlying data distribution and extract useful features.

 2. Fine-tuning : The pre-trained model is then further trained on a

smaller set of labeled data. The model adjusts its parameters to

better fit the specific task at hand.
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It also mainly follows Two Hypothesis in unsupervised Pretrained

Networks:

1. Better optimization: Unsupervised pretraining puts the network in a

region of parameter space run deeper than when starting with random

parameters. In simple words, the network starts near a global

minimum. In contrast to a local minimum, a global minimum means a

lower training error.

2. Better regularization: Unsupervised pretraining puts the network in a

region of parameter space in which training error is not necessarily

better than when starting at random (or possibly worse)
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but which systematically yields better generalization (lower test error).

Such behavior would be indicative of a regularization effect.

Based on the Unsupervised Pretrained Networks we can follow the

GAN and Auto Encoders Algorithms.
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 To understand the term GAN let’s break it into separate three

separate Words. and each of them has its separate

meaning, which is as follows:

1. Generative – To learn a generative model, which describes how

data is generated in terms of a probabilistic model. In simple words, it

explains how data is generated visually.

2. Adversarial – The training of the model is done in an adversarial

setting. i.e, The word adversarial refers to the context of GANs, the

generative result is compared with the actual images in the data set.

GENERATIVE ADVERSARIAL NETWORKS



 This mechanism known as a discriminator and this is used to apply

a model that attempts to distinguish between real and fake images.

3. Networks – Use deep neural networks as artificial intelligence (AI)

algorithms for training purposes.

GANs are a type of neural network architecture that

can generate new data based on the patterns learned

from a given dataset.

This means that GANs can create entirely new,

realistic images, videos, and even audio clips that

have never existed before.

CONTD..

https://www.projectpro.io/article/5-different-types-of-neural-networks/431


 Generative Adversarial Networks (GANs) are a groundbreaking

innovation in the field of Deep Learning, particularly within the

domain of unsupervised learning.

 GANs are made up of two neural networks,

 1. Generator and

 2. Discriminator

 These 2 models that automatically discover and learn the patterns in

input data.

ARCHITECTURE OF GAN

https://www.geeksforgeeks.org/neural-networks-a-beginners-guide/


 They comprise two networks:

 The generator, which produces synthetic data. i.e, information that

is artificially generated rather than produced by real-world events

and

 The discriminator, which differentiates between real and generated

data. This unique structure enables GANs to generate highly

realistic and diverse outputs, from images to text.

CONTD..



CONTD..

The GAN Network Process



The Generator: The generator network is responsible for generating

new data that is similar to the training data. The generator network

takes random noise as input and produces a generated output. The

goal is to train the generator to produce outputs that are as close to

the real data as possible.

 A Generator in GANs is a neural network that creates fake data to

be trained on the discriminator.
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 The main aim of the Generator is to make the discriminator 

classify its output as real. The part of the GAN that trains the 

Generator includes:

 Provide fake input or noise and get random noise to produce

output based on the noise sample.

 Predict generator output either real or fake using discriminator.

 Calculate discriminator loss and perform back propagation.

 Calculate gradients to update the weights of the generator.
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 Back propagation of Generator: The generator modifies some data

attributes by adding noise (or random changes) to certain attributes

 The generator passes the modified data to the discriminator

 The discriminator calculates the probability that the generated

output belongs to the original dataset

 The discriminator gives some guidance to the generator to reduce

the noise vector randomization in the next cycle

 The generator attempts to maximize the probability of mistake by

the discriminator, but the discriminator attempts to minimize the

probability of error.
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 In training iterations, both the generator and discriminator iterating

continuously until they reach an equilibrium state. In the

equilibrium state, the discriminator can no longer recognize

synthesized data. At this point, the training process is over.
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The Discriminator: In a GAN, the discriminator acts as a binary

classifier whose main task is to differentiate between real data and

data generated by the GAN's generator. The choice of network

architecture for the discriminator depends on the type of data being

classified.

 The Discriminator is a neural network that identifies real data from

the fake data created by the Generator. The discriminator's training

data comes from different two sources:

 The real data instances, such as real pictures of birds, humans,

currency notes, etc., are used by the Discriminator as positive

samples during training.
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 The fake data instances created by the Generator are used as

negative examples during the training process.

CONTD..

While training the discriminator, it connects to two loss functions.

During discriminator training, the discriminator ignores the

generator loss and just uses the discriminator loss.



 Next, The discriminator updates its weights through

backpropagation from the discriminator loss through the

discriminator network.
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 We are basically training the Discriminator to maximize the 

probability of assigning correct labels to both real and generated 

data.

We are also training the Generator to minimize the probability to 

get caught by the Discriminator, which is equivalent to minimizing 

log(1-D(G(z))).

 here the Discriminator is trying to minimize its reward V(D, G) and

the Generator is trying to minimize the Discriminator’s reward or

in other words, maximize its loss.

MATHEMATICAL NOTATION



MATHEMATICAL NOTATION

where,  G = Generator,  D = Discriminator

Pdata(x) = distribution of real data

P(z) = distribution of generator

x = sample from Pdata(x)

z = sample from P(z)

D(x) = Discriminator network

G(z) = Generator network



 The training process for GANs involves minimizing a loss function

that quantifies the difference between the generated and real data.

 There are two types of Loss Functions:

 1. Generator Loss

 2. Discriminator Loss

1. Generator Loss: The objective of the generator in a GAN is to

produce synthetic samples that are realistic enough to fool the

discriminator. The generator achieves this by minimizing its loss

function JG.

LOSS FUNCTIONS IN GAN



 The loss is minimized when the log probability is maximized, i.e.,

when the discriminator is highly likely to classify the generated

samples as real. The following equation is given below:

CONTD..

The generator aims to minimize this loss, encouraging the

production of samples that the discriminator classifies as real

(logD(G(zi)), close to 1.



2. Discriminator Loss: The discriminator reduces the

negative log likelihood of correctly classifying both

produced and real samples.
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 Step 1: Define a Problem.

 Step 2: Select Architecture of GAN. 

 Step 3: Train Discriminator on Real Dataset. 

 Step 4: Train Generator. 

 Step 5: Train Discriminator on Fake Data. 

 Step 6: Train Generator with the output of Discriminator.

TRAINING PROCESS OF GAN



TYPES OF GAN



 1. Vanilla GAN: This is the most basic form of GAN, where both

the generator and discriminator are modeled using multi-layer

perceptrons.

 The generator focuses on capturing data distribution, while the

discriminator evaluates the probability that a given sample is real or

synthetic.

 This Vanilla GAN always tries to optimize the

mathematical equation using stochastic gradient

descent.
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https://www.geeksforgeeks.org/ml-stochastic-gradient-descent-sgd/
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ARCHITECTURE OF VANILLA GAN
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EXAMPLE OF VANILLA GAN



 2. Conditional GAN: CGAN can be described as a deep

learning method in which some conditional parameters are put into

place.

 Here, both networks receive additional information such as class

labels, making the model conditional. This allows the generation of

data that is more specific to the given condition.

 In CGAN, an additional parameter ‘y’ is added to the Generator

for generating the corresponding data.

 Labels are also put into the input to the Discriminator in order for

the Discriminator to help distinguish the real data from the fake

generated data.
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https://www.geeksforgeeks.org/conditional-generative-adversarial-network/
https://www.geeksforgeeks.org/introduction-deep-learning/
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Architecture of Conditional  GAN

(CGAN)
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Example of Conditional  GAN

(CGAN)



 3. Deep Convolutional GAN (DCGAN): DCGANs

employ convolutional neural networks, making them more effective

for tasks that involve image data. They are known for generating

high-quality, high-resolution images.

 Deep Convolutional GAN (DCGAN) was proposed by a researcher

from MIT and Facebook AI research. It is widely used in many

convolution-based generation-based techniques.

 It is composed of ConvNets in place of multi-layer perceptrons.

 DCGAN uses convolutional and convolutional-transpose layers in the

generator and discriminator, respectively. It was proposed by Radford.
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https://www.blockchain-council.org/ai/convolution-neural-network/
https://www.geeksforgeeks.org/visualization-of-convents-in-pytorch-python/
https://www.geeksforgeeks.org/multi-layer-perceptron-learning-in-tensorflow/
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Architecture of Deep Convolution  GAN

(DCGAN)

 Here the discriminator consists of strided convolution layers, and

Relu as activation function.. The generator consists of

convolutional-transpose layers, and ReLU activations. The output

will be a 3x64x64 RGB image.
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Example of DCGAN (DCGAN)
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Example of DCGAN (DCGAN)



 4. Cycle GAN: Cycle GAN is used to transfer characteristic of one

image to another or can map the distribution of images to another.

 In CycleGAN we treat the problem as an image reconstruction

problem. We first take an image input (x) and using the generator

G to convert into the reconstructed image.

 Then we reverse this process from reconstructed image to original

image using a generator F.

 Then we calculate the mean squared error loss between real and

reconstructed image.
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 The most important feature of this cycle_GAN is that it can do this

image translation on an unpaired image where there is no relation

exists between the input image and output image.

CONTD..

Architecture of Cycle GAN

(CGAN)



CONTD..

Architecture of Cycle GAN

(CGAN)



 5. Generative Adversarial Text to Image Synthesis: Text to image

synthesis (T2I) is one of the most challenging and interesting tasks

in the modern domain of Computer Vision. These GANs can

generate images from textual descriptions, bridging the gap between

natural language and visual data.

CONTD..

Architecture of Text to Image Synthesis
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Example
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Example



 6. Style GAN: Style GAN proposes a lot of changes in the

generator part.

 StyleGAN was designed to create realistic images while

manipulating and controlling certain features or styles of the image.

These styles associated with the generated images could be features

like color, texture, pose, etc.
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Architecture of Text to Image Synthesis



 First, StyleGAN takes a random vector as an input. This vector is

mapped into a style vector representing different aspects of the

image's style and appearance.

 The generator network then generates an image using the style

vector.

 The discriminator network evaluates whether the generated image

is real or fake (generated).
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 7. Super Resolution GAN (SRGAN): SRGAN enhances the

resolution of images, turning low-resolution inputs into high-

resolution outputs without losing detail.

 SRGAN was proposed by researchers at Twitter. The motive of

this architecture is to recover finer textures from the image when

we upscale it so that it’s quality cannot be compromised.
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Architecture of Super Resolution GAN
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Example of Super Resolution GAN



 NVIDIA research center has to develop these GAN Applications

in real time.

 They generate high quality and photo realistic Images, Videos

 1. Image to Image Translation: GANs Can be in use for

translating data from images. In image-to-image translations, GANs

account for tasks such as:

 Changing sketches to color photographs.

 Converting satellite images to google maps.

 Translation of photos from day to night and vice versa.

 Translation of black and white photographs to color.

APPLICATIONS OF GAN
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 StarGAN is an image-to-image translation for one domain to

another. For example, given a happy face, we want to transform it

into a fearful face.
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 2. Image Editing: Most image editing software these

days don’t give us much flexibility to make creative

changes in pictures.

 For example, let’s say you want to change the appearance

of a 90-year-old person by changing his/her hairstyle. This

can’t be done by the current image editing tools out there.

But guess what? Using GANs, we can reconstruct images

and attempt to change the appearance drastically.
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 4. Face Synthesis: Synthesis faces in different poses: With a

single input image, we create faces in different viewing angles.

 For example, we can use this to transform images that will be easier

for face recognition.
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 5. Image Painting: Repair images have been an

important subject decades ago. GAN is used to repair

images and fill the missing part with created

“content”.
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 6. Pix to Pix: Pix2Pix is an image-to-image translation that get

quoted in cross-domain GAN’s frequently. For example, it converts

a satellite image into a map (the bottom left).
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 DeblurGAN performs motion deblurring.
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 7.Music Generation: GAN can be applied to non-image

domain, like composing music.
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FUTURE GENERATIONS OF GANS



DIFFERENCES B/W VAN AND GAN
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MAJOR ARCHITECTURES OF

DEEP NETWORKS

1

Deep Belief 

Networks



 We create Deep Belief Networks (DBNs) to address issues with

classic neural networks in deep layered networks.

 For example – slow learning, becoming stuck in local minima

owing to poor parameter selection, and requiring a large number of

training datasets of these given input layer.

 A DBN is a deep-learning architecture introduced by Geoffrey

Hinton in 2006. Deep Belief Networks (DBNs) are a type of deep

learning architecture combining unsupervised learning principles

and neural networks.

 Deep Belief Networks (DBNs) are sophisticated artificial neural

networks used in the field of deep learning.

DEEP BELIEF NETWORKS

https://www.analyticsvidhya.com/blog/2022/01/introduction-to-neural-networks/
https://www.analyticsvidhya.com/blog/tag/deep-belief-networks/
https://www.geeksforgeeks.org/artificial-neural-networks-and-its-applications/
https://www.geeksforgeeks.org/introduction-deep-learning/


 They are designed to discover and learn patterns

within large sets of data automatically.

 Imagine them as multi-layered networks, where each

layer is capable of making sense of the information

received from the previous one, gradually building

up a complex understanding of the overall data.

 They are composed of layers of Restricted

Boltzmann Machines (RBMs), which are trained one

at a time in an unsupervised manner.
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 Several Restricted Boltzmann Machines (RBM) can

be stacked and trained in a greedy manner to form

Deep Belief Network architecture.

 i.e, It is a composition of Stack of Unsupervised

Neural Network such as Restricted Bolzmann

Machine(RBM).

 Each RBM has a Visible Layer (Input) and Hidden

Layer (Output)

 Here the Hidden Layer in Stack1 is the Visible Layer

for the Stack2.etc.
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 The output of one RBM is used as the input to the

next RBM, and the final output is used for supervised

learning tasks such as classification or regression.

 Here, Each RBM network is trained independently

with their greedy method.

 DBNs work similarly to traditional multi-layer 

perceptrons (MLPs) and offer certain benefits over 

them, including faster training and better weight 

initialization.
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STRUCTURE OF DEEP BELIEF NETWORK



STRUCTURE OF DEEP BELIEF NETWORK



 In the DBN, we have a hierarchy of layers. The top two layers are

the associative memory, and the bottom layer is the visible units.

The arrows pointing towards the layer closest to the data point to

relationships between all lower layers.
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HOW DEEP BELIEF NETWORK WORKS



 The Deep Belief Network (DBN) algorithm consists of

two main steps:

 1. Pre Training

 2. Fine Tuning

 1. Pre Training: In the pre-training phase, the network learns to

represent the input data layer by layer. Each layer is trained

independently as an RBM, which allows the network to learn complex

data representations efficiently.

 The ensemble’s first layer (often called the input layer or bottom layer)

interacts directly with the raw data, learning its features and creating a

latent representation during the process.

HOW DEEP BELIEF NETWORK WORKS



 Each subsequent layer is then trained so the first’s output becomes

the next’s input. This greedy layer-wise learning allows for efficient

feature learning.

 We iterate this process multiple times, covering various data

samples and updating weights after each pass. Finally, the last layer

(output layer) outputs the network’s prediction.
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 2. Fine Tuning: In the fine-tuning phase, the DBN adjusts its

parameters for a specific task, like classification or regression.

 This is typically done using a technique known as backpropagation,

where the network’s performance on a task is evaluated, and the

errors are used to update the network’s parameters.

 This phase often involves supervised learning, where the network is

trained with labelled data.
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 The algorithm for training a DBN can be summarized as follows:

 Initialize the network with random weights.

 Start with the first layer and work your way to the last layer as

you use unsupervised learning to train each layer of the network.

 Fine-tune the entire network using supervised learning and back

propagation.

 Repeat steps 2 and 3 until the network has converged.

ALGORITHM



 Deep Belief Networks (DBNs) employ several mathematical

concepts, blending probability theory with neural network

structures. At their core, they use Restricted Boltzmann Machines

(RBMs) for layer-wise learning, which are based on probabilistic

graphical models.

 1. Energy-Based Model: Each RBM within a DBN is an energy-

based model. For an RBM with visible units v and hidden units h,

the energy function is defined as:

MATHEMATICAL REPRESENTATION

Here, ai and bj are bias terms, and wij represents the weights between

units.



 2. Probability Distribution: The probability of a given state of the

RBM is defined by the Boltzmann distribution:

MATHEMATICAL REPRESENTATION

where Z is the partition function, a normalization factor calculated

as the sum over all possible pairs of visible and hidden units.



 Deep belief networks use probabilistic modeling and a supervised

learning approach to offer certain benefits over conventional neural

networks. These include:

 Ability to handle large data using hidden units to extract underlying

correlations.

 Faster training and better results. Achieving global minima due to 

better weights initialization. 

 Model Interpretability: Like many deep learning models, DBNs 

can act as "black boxes," making it difficult to understand how they 

are making predictions or what features they have learned.

BENEFITS OF DBN

https://deepai.org/machine-learning-glossary-and-terms/deep-learning


 Deep Belief Networks (DBNs) have been applied in a variety of

fields, including:

 Computer vision: DBNs have been used for tasks like recognizing

objects in pictures or putting pictures into different groups.

 Speech recognition: DBNs have been used for speech recognition

tasks, such as transcribing speech into text.

 Natural language processing: DBNs have been used for natural

languages processing tasks, such as sentiment analysis and text

classification.

APPLICATIONS OF DBN

https://spotintelligence.com/2022/12/16/sentiment-analysis-tools-in-python/
https://spotintelligence.com/2022/12/20/text-classification-python/


 Recommender systems: DBNs have been used in recommender

systems, which give users suggestions based on what they like and

how they act.

 In bioinformatics, DBNs have been used to predict how proteins

will interact with each other, look at how genes are expressed, and

find new drugs.

 Financial analysis: DBNs have been used to predict the stock

market and figure out how risky something is.

CONTD..

https://en.wikipedia.org/wiki/Recommender_system#:~:text=A%20recommender%20system%2C%20or%20a,pertinent%20to%20a%20particular%20user.


 DBNs have been a crucial part of the deep learning ecosystem.

Here’s what you need to know about them:

 Deep Belief Networks are constructed by stacking multiple

Restricted Boltzmann Machines.

 We train each RBM in the stack independently with greedy

learning.

 Training DBNs consists of an unsupervised pre-training phase

followed by supervised fine-tuning.

KEY POINTS



 DBNs understand latent data representations and can generate new

data samples.

 DBNs are also employed in classification, motion capture, speech

recognition, etc.

 The DBN architecture is not very popular today and has entirely 

been replaced by other Deep Learning algorithms like CNN and 

RNN.

KEY POINTS
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 Generative Adversarial Networks (GANs) are a powerful class of

neural networks that are used for unsupervised learning. It was

developed and introduced by Ian J. Goodfellow in 2014.

 Generative modeling generates unstructured data such as new

images or text or Videos.

 GAN is a class of algorithmic Deep learning framework having two

neural networks that connect and can analyze, capture and copy the

variations within a dataset.

GENERATIVE ADVERSARIAL NETWORKS

(GANS)



 To understand the term GAN let’s break it into separate three

separate Words. and each of them has its separate

meaning, which is as follows:

1. Generative – To learn a generative model, which describes how

data is generated in terms of a probabilistic model. In simple words, it

explains how data is generated visually.

2. Adversarial – The training of the model is done in an adversarial

setting. i.e, The word adversarial refers to the context of GANs, the

generative result is compared with the actual images in the data set.
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 This mechanism known as a discriminator and this is used to apply

a model that attempts to distinguish between real and fake images.

3. Networks – Use deep neural networks as artificial intelligence (AI)

algorithms for training purposes.

GANs are a type of neural network architecture that

can generate new data based on the patterns learned

from a given dataset.

This means that GANs can create entirely new,

realistic images, videos, and even audio clips that

have never existed before.
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https://www.projectpro.io/article/5-different-types-of-neural-networks/431


 Generative Adversarial Networks (GANs) are a groundbreaking

innovation in the field of Deep Learning, particularly within the

domain of unsupervised learning.

 GANs are made up of two neural networks,

 1. Generator and

 2. Discriminator

 These 2 models that automatically discover and learn the patterns in

input data.

ARCHITECTURE OF GAN

https://www.geeksforgeeks.org/neural-networks-a-beginners-guide/


 They comprise two networks:

 The generator, which produces synthetic data. i.e, information that

is artificially generated rather than produced by real-world events

and

 The discriminator, which differentiates between real and generated

data. This unique structure enables GANs to generate highly

realistic and diverse outputs, from images to text.

CONTD..
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The GAN Network Process



The Generator: The generator network is responsible for generating

new data that is similar to the training data. The generator network

takes random noise as input and produces a generated output. The

goal is to train the generator to produce outputs that are as close to

the real data as possible.

 A Generator in GANs is a neural network that creates fake data to

be trained on the discriminator.
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 The main aim of the Generator is to make the discriminator 

classify its output as real. The part of the GAN that trains the 

Generator includes:

 Provide fake input or noise and get random noise to produce

output based on the noise sample.

 Predict generator output either real or fake using discriminator.

 Calculate discriminator loss and perform back propagation.

 Calculate gradients to update the weights of the generator.
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 Back propagation of Generator: The generator modifies some data

attributes by adding noise (or random changes) to certain attributes

 The generator passes the modified data to the discriminator

 The discriminator calculates the probability that the generated

output belongs to the original dataset

 The discriminator gives some guidance to the generator to reduce

the noise vector randomization in the next cycle

 The generator attempts to maximize the probability of mistake by

the discriminator, but the discriminator attempts to minimize the

probability of error.
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 In training iterations, both the generator and discriminator iterating

continuously until they reach an equilibrium state. In the

equilibrium state, the discriminator can no longer recognize

synthesized data. At this point, the training process is over.
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The Discriminator: In a GAN, the discriminator acts as a binary

classifier whose main task is to differentiate between real data and

data generated by the GAN's generator. The choice of network

architecture for the discriminator depends on the type of data being

classified.

 The Discriminator is a neural network that identifies real data from

the fake data created by the Generator. The discriminator's training

data comes from different two sources:

 The real data instances, such as real pictures of birds, humans,

currency notes, etc., are used by the Discriminator as positive

samples during training.
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 The fake data instances created by the Generator are used as

negative examples during the training process.
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While training the discriminator, it connects to two loss functions.

During discriminator training, the discriminator ignores the

generator loss and just uses the discriminator loss.



 Next, The discriminator updates its weights through

backpropagation from the discriminator loss through the

discriminator network.
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 We are basically training the Discriminator to maximize the 

probability of assigning correct labels to both real and generated 

data.

We are also training the Generator to minimize the probability to 

get caught by the Discriminator, which is equivalent to minimizing 

log(1-D(G(z))).

 here the Discriminator is trying to minimize its reward V(D, G) and

the Generator is trying to minimize the Discriminator’s reward or

in other words, maximize its loss.

MATHEMATICAL NOTATION



MATHEMATICAL NOTATION

where,  G = Generator,  D = Discriminator

Pdata(x) = distribution of real data

P(z) = distribution of generator

x = sample from Pdata(x)

z = sample from P(z)

D(x) = Discriminator network

G(z) = Generator network



 The training process for GANs involves minimizing a loss function

that quantifies the difference between the generated and real data.

 There are two types of Loss Functions:

 1. Generator Loss

 2. Discriminator Loss

1. Generator Loss: The objective of the generator in a GAN is to

produce synthetic samples that are realistic enough to fool the

discriminator. The generator achieves this by minimizing its loss

function JG.

LOSS FUNCTIONS IN GAN



 The loss is minimized when the log probability is maximized, i.e.,

when the discriminator is highly likely to classify the generated

samples as real. The following equation is given below:
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The generator aims to minimize this loss, encouraging the

production of samples that the discriminator classifies as real

(logD(G(zi)), close to 1.



2. Discriminator Loss: The discriminator reduces the

negative log likelihood of correctly classifying both

produced and real samples.
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 Step 1: Define a Problem.

 Step 2: Select Architecture of GAN. 

 Step 3: Train Discriminator on Real Dataset. 

 Step 4: Train Generator. 

 Step 5: Train Discriminator on Fake Data. 

 Step 6: Train Generator with the output of Discriminator.

TRAINING PROCESS OF GAN



TYPES OF GAN



 1. Vanilla GAN: This is the most basic form of GAN, where both

the generator and discriminator are modeled using multi-layer

perceptrons.

 The generator focuses on capturing data distribution, while the

discriminator evaluates the probability that a given sample is real or

synthetic.

 This Vanilla GAN always tries to optimize the

mathematical equation using stochastic gradient

descent.
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https://www.geeksforgeeks.org/ml-stochastic-gradient-descent-sgd/
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ARCHITECTURE OF VANILLA GAN
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EXAMPLE OF VANILLA GAN



 2. Conditional GAN: CGAN can be described as a deep

learning method in which some conditional parameters are put into

place.

 Here, both networks receive additional information such as class

labels, making the model conditional. This allows the generation of

data that is more specific to the given condition.

 In CGAN, an additional parameter ‘y’ is added to the Generator

for generating the corresponding data.

 Labels are also put into the input to the Discriminator in order for

the Discriminator to help distinguish the real data from the fake

generated data.
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https://www.geeksforgeeks.org/conditional-generative-adversarial-network/
https://www.geeksforgeeks.org/introduction-deep-learning/
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Architecture of Conditional  GAN

(CGAN)
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Example of Conditional  GAN

(CGAN)



 3. Deep Convolutional GAN (DCGAN): DCGANs

employ convolutional neural networks, making them more effective

for tasks that involve image data. They are known for generating

high-quality, high-resolution images.

 Deep Convolutional GAN (DCGAN) was proposed by a researcher

from MIT and Facebook AI research. It is widely used in many

convolution-based generation-based techniques.

 It is composed of ConvNets in place of multi-layer perceptrons.

 DCGAN uses convolutional and convolutional-transpose layers in the

generator and discriminator, respectively. It was proposed by Radford.
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https://www.blockchain-council.org/ai/convolution-neural-network/
https://www.geeksforgeeks.org/visualization-of-convents-in-pytorch-python/
https://www.geeksforgeeks.org/multi-layer-perceptron-learning-in-tensorflow/
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Architecture of Deep Convolution  GAN

(DCGAN)

 Here the discriminator consists of strided convolution layers, and

Relu as activation function.. The generator consists of

convolutional-transpose layers, and ReLU activations. The output

will be a 3x64x64 RGB image.
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Example of DCGAN (DCGAN)
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Example of DCGAN (DCGAN)



 4. Cycle GAN: Cycle GAN is used to transfer characteristic of one

image to another or can map the distribution of images to another.

 In CycleGAN we treat the problem as an image reconstruction

problem. We first take an image input (x) and using the generator

G to convert into the reconstructed image.

 Then we reverse this process from reconstructed image to original

image using a generator F.

 Then we calculate the mean squared error loss between real and

reconstructed image.
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 The most important feature of this cycle_GAN is that it can do this

image translation on an unpaired image where there is no relation

exists between the input image and output image.

CONTD..

Architecture of Cycle GAN

(CGAN)
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Architecture of Cycle GAN

(CGAN)



 5. Generative Adversarial Text to Image Synthesis: Text to image

synthesis (T2I) is one of the most challenging and interesting tasks

in the modern domain of Computer Vision. These GANs can

generate images from textual descriptions, bridging the gap between

natural language and visual data.
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Architecture of Text to Image Synthesis
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Example
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Example



 6. Style GAN: Style GAN proposes a lot of changes in the

generator part.

 StyleGAN was designed to create realistic images while

manipulating and controlling certain features or styles of the image.

These styles associated with the generated images could be features

like color, texture, pose, etc.
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Architecture of Text to Image Synthesis



 First, StyleGAN takes a random vector as an input. This vector is

mapped into a style vector representing different aspects of the

image's style and appearance.

 The generator network then generates an image using the style

vector.

 The discriminator network evaluates whether the generated image

is real or fake (generated).
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 7. Super Resolution GAN (SRGAN): SRGAN enhances the

resolution of images, turning low-resolution inputs into high-

resolution outputs without losing detail.

 SRGAN was proposed by researchers at Twitter. The motive of

this architecture is to recover finer textures from the image when

we upscale it so that it’s quality cannot be compromised.
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Architecture of Super Resolution GAN
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Example of Super Resolution GAN



 NVIDIA research center has to develop these GAN Applications

in real time.

 They generate high quality and photo realistic Images, Videos

 1. Image to Image Translation: GANs Can be in use for

translating data from images. In image-to-image translations, GANs

account for tasks such as:

 Changing sketches to color photographs.

 Converting satellite images to google maps.

 Translation of photos from day to night and vice versa.

 Translation of black and white photographs to color.

APPLICATIONS OF GAN



CONTD…



 StarGAN is an image-to-image translation for one domain to

another. For example, given a happy face, we want to transform it

into a fearful face.
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 2. Image Editing: Most image editing software these

days don’t give us much flexibility to make creative

changes in pictures.

 For example, let’s say you want to change the appearance

of a 90-year-old person by changing his/her hairstyle. This

can’t be done by the current image editing tools out there.

But guess what? Using GANs, we can reconstruct images

and attempt to change the appearance drastically.
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 4. Face Synthesis: Synthesis faces in different poses: With a

single input image, we create faces in different viewing angles.

 For example, we can use this to transform images that will be easier

for face recognition.
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 5. Image Painting: Repair images have been an

important subject decades ago. GAN is used to repair

images and fill the missing part with created

“content”.
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 6. Pix to Pix: Pix2Pix is an image-to-image translation that get

quoted in cross-domain GAN’s frequently. For example, it converts

a satellite image into a map (the bottom left).
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 DeblurGAN performs motion deblurring.
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 7.Music Generation: GAN can be applied to non-image

domain, like composing music.
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FUTURE GENERATIONS OF GANS



DIFFERENCES B/W VAN AND GAN
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